Chris Glaser
Thermal performance is critical in most power supply designs. Understanding the limitations of your switching regulator and knowing how to get the most out of it is integral to optimizing the performance of your system. In this blog, I will explain how to interpret derating curves and I aim to explain ways you can improve thermal performance with different layout techniques.
A derating curve like the one shown in Figure 1 is an essential part of many power supply designs. With the derating curve, you can quickly evaluate if the power supply can support your particular application’s requirements in addition to quickly seeing the rated output current at various ambient temperatures. Looking at Figure 1, the effect of temperature on current is obvious, the safe operating are of the devices lies below the curve as the line represents the limits defined by temperature.
The type of knowledge you can derive from a derating curve is expressed in Figure 1. Figure 1 shows several derating curves for a MicroSiP power module, each for a different value of the junction-to-ambient thermal resistance, commonly known as ΘJA. Wouldn’t you choose the power module that produces the green curve, since it has the lowest ΘJA and the least derating?
Actually, each curve in Figure 1 uses the same TPS82130 power module under the same operating conditions. Only the printed circuit board (PCB) layout and airflow have changed. You, the designer, choose which derating curve you get. This brings to light a key truth about power modules: their thermal performance, and thus their derating, is highly dependent on the application and usage of the device, which includes the PCB layout and system variables such as airflow.
Specifically, the red curve in Figure 1 is generated with the standard Joint Electronic Devices Engineering Council (JEDEC) PCB design. While JEDEC’s board definition is used to generate most thermal tables in device data sheets, the JEDEC board is not a very realistic type of board for final applications.
Figure 2 shows one difference, of many, between the JEDEC PCB and a more typical application PCB: the amount of copper connected to the device’s pins. The very small amount of copper (shown in purple) used in the JEDEC design yields unrealistically poor thermal performance.
By focusing on the thermal design when using a power module, it’s possible to easily achieve better performance than the JEDEC PCB. Table 1 shows several design options using different numbers of vias, layers and airflow. All are an improvement over the JEDEC PCB design, quantified by the lower ΘJA value and resulting lower operating temperature. Just through PCB and system design, you can reduce the operating temperature by nearly 50°C.
JEDEC | EVM | |||||
---|---|---|---|---|---|---|
Vias | 3 | 0 | 3 | 3 | 6 | 6 |
Layers | 4 | 4 | 4 | 6 | 4 | 4 |
200 linear-feet-per-minute (LFM) airflow | No | No | No | No | No | Yes |
ΘJA (˚C/W) |
58.2 | 51.4 | 46.1 | 44.6 | 43.8 | 28.3 |
Module temperature (˚C) at full load | 118.7 | 107.8 | 99.22 | 96.8 | 95.5 | 70.6 |
Want to read more about this topic? Check out my article, “Improving the thermal performance of a MicroSiP power module,” in the Analog Design Journal.
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS” AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.
TI’s products are provided subject to TI’s Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for TI products.
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2023, Texas Instruments Incorporated