Chris Clearman
The switching of the three-phase inverter needs to be controlled by digital logic – typically a programmable microcontroller (MCU) - to regulate the torque or velocity of the motor while maximizing the efficiency (required torque with minimum current usage). With the use of hall sensors on the motor it is reasonably straight forward to control a BLDC motor using a six-step (trapezoidal) commutation control technique with limited digital logic resources (a very small programmable MCU or even a hard coded ASIC).
This six-step approach has some limitations surrounding torque inefficiency:
An approach that works better for most of these motors is called Field Oriented Control (FOC). In FOC, you can produce a stator field that is oriented and synchronized to the rotor field, which maximizes torque production. The transition between stator states is smooth, removing torque ripple and improving the dynamic performance of the system. The voltages seen by the motor phases are sinusoidal, enhancing efficiency. FOC isn’t that much more complex than six-step BLDC. It measures at least two phase currents instead of one bus current; does some additional math calculations; two proportional-integral (PI) current controllers instead of one; and a few more calculations for the pulse width modulation (PWM) generation.
However, there is the issue of the rotor sensor. The hall sensors used in six-step BLDC do not give enough accuracy on the position of the rotor magnetic field location for FOC. Further, hall sensors have some upfront costs (including additional wiring and voltage requirements), as well as lifetime costs due to their low reliability and high system failure rate. Additionally, some applications simply can’t use hall sensors due to mechanical limitation (e.g. compressors). A solution could be to use a different type of rotor magnetic sensor. Digital encoders (often used in high precision servo drives) and analog resolvers (often used for the EV propulsion motor) give the resolution required for FOC, but are expensive and impractical compared to simple hall sensors. The only solution then is Sensorless FOC.
Sensorless FOC rely on software algorithms to estimate the rotor magnetic field position (and often rotor velocity) based on the currents and/or voltages in the inverter. Sensorless rotor position estimators (or observers) have been theorized, developed and in use for over 25 years. But their practical implementations have pretty much been constrained to those companies with extensive investment in creating this expertise (AC drives, industrial motor control, some advanced appliance and automotive). At TI, we have been providing software libraries and system examples of Sensorless FOC for 20 years. Through this process, we have realized some significant limitations of the conventional Sensorless FOC solutions available from semiconductor suppliers (including our own). Therefore, we created a new software observer (FAST) and control solution (InstaSPIN-FOC) which solves these challenges.
InstaSPIN-FOC capability is made available through use of an on-chip library integrated into three members of TI's 32-bit real time Piccolo™ MCU controllers. Piccolo MCU devices are widely used in industrial and automotive applications and are available in industrial (-40 to 105C) and AEC automotive Q100 (-40 to 125C) temperature grades. The quickest way to get started spinning your motor is to purchase an InstaSPIN-FOC enabled three-phase motor control evaluation module of the appropriate voltage and current level.
Learn more:
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS” AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.
TI’s products are provided subject to TI’s Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for TI products.
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2023, Texas Instruments Incorporated