Ideal for space-critical applications, the LM4050-N precision voltage reference is available in the sub-miniature (3 mm × 1.3 mm) SOT-23 surface-mount package. The LM4050-N design eliminates the need for an external stabilizing capacitor while ensuring stability with any capacitive load, thus making the LM4050-N easy to use. Further reducing design effort is the availability of several fixed reverse breakdown voltages: 2.048 V, 2.5 V, 4.096 V, 5 V, 8.192 V, and 10 V. The minimum operating current increases from 60 μA for the LM4050-N-2.0 to 100 μA for the LM4050-N-10.0. All versions have a maximum operating current of 15 mA.
The LM4050-N utilizes fuse and Zener-zap reverse breakdown voltage trim during wafer sort to ensure that the prime parts have an accuracy of better than ±0.1% (A grade) at 25°C. Bandgap reference temperature drift curvature correction and low dynamic impedance ensure stable reverse breakdown voltage accuracy over a wide range of operating temperatures and currents.
All grades and voltage options of the LM4050-N are available in both an industrial temperature range (−40°C and 85°C) and an extended temperature range (−40°C and 125°C).
PART NUMBER | PACKAGE | BODY SIZE (NOM) |
---|---|---|
LM4050-N | SOT-23 (3) | 2.92 mm × 1.30 mm |
LM4050-N-Q1 |
Changes from F Revision (June 2015) to G Revision
Changes from E Revision (April 2013) to F Revision
Changes from D Revision (April 2013) to E Revision
PIN | I/O | DESCRIPTION | |
---|---|---|---|
NAME | NO. | ||
Cathode | 1 | I/O | Shunt current and input voltage |
Anode | 2 | O | Common pin, normally connected to ground |
NC | 3 | — | No internal connection |
MIN | MAX | UNIT | |||
---|---|---|---|---|---|
Reverse Current | 20 | mA | |||
Forward Current | 10 | mA | |||
Power Dissipation (TA = 25°C)(1) | 280 | mW | |||
Maximum Junction Temperature (2) | 150 | °C | |||
Storage Temperature | –65 | 150 | °C |
VALUE | UNIT | |||
---|---|---|---|---|
V(ESD) | Electrostatic discharge | Human body model (HBM), per ANSI/ESDA/JEDEC JS-001(1) | ±2000 | V |
Charged device model (CDM), per JEDEC specification JESD22-C101(2) | ±1000 | |||
Machine model (MM) | ±200 |
MIN | MAX | UNIT | ||
---|---|---|---|---|
Industrial Temperature Range | Ambient Temperature Range | –40 | 85 | °C |
Junction Temperature Range | –40 | 85 | °C | |
Extended Temperature Range | Ambient Temperature Range | –40 | 125 | °C |
Junction Temperature | –40 | 125 | °C |
THERMAL METRIC(1) | LM4050-N/-Q1 | UNIT | |
---|---|---|---|
DBZ (SOT-23) | |||
3 PINS | |||
RθJA | Junction-to-ambient thermal resistance | 287 | °C/W |
RθJC(top) | Junction-to-case (top) thermal resistance | 106.6 | °C/W |
RθJB | Junction-to-board thermal resistance | 57.7 | °C/W |
ψJT | Junction-to-top characterization parameter | 5.5 | °C/W |
ψJB | Junction-to-board characterization parameter | 56.4 | °C/W |
RθJC(bot) | Junction-to-case (bottom) thermal resistance | N/A | °C/W |
PARAMETER | TEST CONDITIONS | MIN(4) | TYP(3) | MAX(4) | UNIT | ||
---|---|---|---|---|---|---|---|
VR | Reverse Breakdown Voltage | IR = 100 μA | 2.048 | V | |||
Reverse breakdown voltage tolerance(5) | IR = 100 μA | LM4050AIM3, LM4050AEM3 | ±2.048 | mV | |||
LM4050BIM3, LM4050BEM3 | ±4.096 | ||||||
LM4050CIM3, LM4050CEM3 | ±1024 | ||||||
Industrial temperature range TA = TJ = TMIN to TMAX |
LM4050AIM3, LM4050AEM3 | ±9.0112 | |||||
LM4050BIM3, LM4050BEM3 | ±11.4688 | ||||||
LM4050CIM3, LM4050CEM3 | ±14.7456 | ||||||
Extended temperature range TA = TJ = TMIN to TMAX |
LM4050AIM3, LM4050AEM3 | ±12.288 | |||||
LM4050BIM3, LM4050BEM3 | ±14.7456 | ||||||
LM4050CIM3, LM4050CEM3 | ±17.2032 | ||||||
IRMIN | Minimum operating current | TA = TJ = 25°C | 41 | 60 | μA | ||
TA = TJ = TMIN to TMAX | 65 | ||||||
ΔVR/ΔT | Average reverse breakdown voltage temperature coefficient(5) | IR = 10 mA | ±20 | ppm/°C | |||
IR = 1 mA | ±15 | ||||||
IR = 100 μA, TA = TJ = 25°C | ±15 | ||||||
IR = 100 μA, TA = TJ = TMIN to TMAX |
±50 | ||||||
ΔVR/ΔIR | Reverse breakdown voltage change with operating current change(6) | IRMIN ≤ IR ≤ 1 mA, TA = TJ = 25°C | 0.3 | 0.8 | mV | ||
IRMIN ≤ IR ≤ 1 mA, TA = TJ = TMIN to TMAX |
1.2 | ||||||
1 mA ≤ IR ≤ 15 mA, TA = TJ = 25°C | 2.3 | 6 | |||||
1 mA ≤ IR ≤ 15 mA, TA = TJ = TMIN to TMAX |
8 | ||||||
ZR | Reverse dynamic impedance | IR = 1 mA, f = 120 Hz, IAC = 0.1 IR | 0.3 | Ω | |||
eN | Wideband noise | IR = 100 μA, 10 Hz ≤ f ≤ 10 kHz | 34 | μVrms | |||
ΔVR | Reverse breakdown voltage long term stability | t = 1000 hrs, T = 25°C ±0.1°C, IR = 100 μA | 120 | ppm | |||
VHYST | Thermal hysteresis (7) | ΔT = −40°C to 125°C | 0.7 | mV |
PARAMETER | TEST CONDITIONS | MIN(4) | TYP(3) | MAX(4) | UNIT | ||
---|---|---|---|---|---|---|---|
VR | Reverse breakdown voltage | IR = 100 μA | 2.500 | V | |||
IR = 100 μA | LM4050AIM3, LM4050AEM3 | ±2.5 | mV | ||||
LM4050BIM3, LM4050BEM3 | ±5 | ||||||
LM4050CIM3, LM4050CEM3 | ±13 | ||||||
Reverse breakdown voltage tolerance(5) | Industrial temperature range, TA = TJ = TMIN to TMAX |
LM4050AIM3, LM4050AEM3 | ±11 | mV | |||
LM4050BIM3, LM4050BEM3 | ±24 | ||||||
LM4050CIM3, LM4050CEM3 | ±21 | ||||||
Extended temperature range, TA = TJ = TMIN to TMAX |
LM4050AIM3, LM4050AEM3 | ±15 | |||||
LM4050BIM3, LM4050BEM3 | ±18 | ||||||
LM4050CIM3, LM4050CEM3 | ±25 | ||||||
IRMIN | Minimum operating current | TA = TJ = 25°C | 41 | 60 | μA | ||
TA = TJ = TMIN to TMAX | 65 | ||||||
ΔVR/ΔT | Average reverse breakdown voltage temperature coefficient(5) | IR = 10 mA | ±20 | ppm/°C | |||
IR = 1 mA | ±15 | ||||||
IR = 100 μA, TA = TJ = 25°C | ±15 | ||||||
IR = 100 μA, TA = TJ = TMIN to TMAX |
±50 | ||||||
ΔVR/ΔIR | Reverse breakdown voltage change with operating current change(6) | IRMIN ≤ IR ≤ 1 mA, TA = TJ = 25°C | 0.3 | 0.8 | mV | ||
IRMIN ≤ IR ≤ 1 mA TA = TJ = TMIN to TMAX |
1.2 | ||||||
ΔVR/ΔIR | Reverse breakdown voltage change with operating current change(6) | 1 mA ≤ IR ≤ 15 mA, TA = TJ = 25°C | 2.3 | 6 | mV | ||
1 mA ≤ IR ≤ 15 mA, TA = TJ = TMIN to TMAX |
8 | ||||||
ZR | Reverse dynamic impedance | IR = 1 mA, f = 120 Hz, IAC = 0.1 IR | 0.3 | Ω | |||
eN | Wideband noise | IR = 100 μA, 10 Hz ≤ f ≤ 10 kHz | 41 | μVrms | |||
ΔVR | Reverse breakdown voltage long term stability | t = 1000 hrs, T = 25°C ±0.1°C, IR = 100 μA | 120 | ppm | |||
VHYST | Thermal hysteresis (7) | ΔT = −40°C to 125°C | 07 | mV |
PARAMETER | TEST CONDITIONS | MIN | TYP(3) | MAX | UNIT | ||
---|---|---|---|---|---|---|---|
VR | Reverse Breakdown Voltage | IR = 100 μA | 4.096 | V | |||
Reverse Breakdown Voltage Tolerance(5) | IR = 100 μA | LM4050AIM3, LM4050AEM3 | ±4.1 | mV | |||
LM4050BIM3,LM4050BEM3 | ±8.2 | ||||||
LM4050CIM3, LM4050CEM3 | ±21 | ||||||
Industrial temperature range, TA = TJ = TMIN to TMAX |
LM4050AIM3, LM4050AEM3 | ±18 | |||||
LM4050BIM3,LM4050BEM3 | ±22 | ||||||
LM4050CIM3, LM4050CEM3 | ±34 | ||||||
Extended temperature range, TA = TJ = TMIN to TMAX |
LM4050AIM3, LM4050AEM3 | ±25 | |||||
LM4050BIM3,LM4050BEM3 | ±29 | ||||||
LM4050CIM3, LM4050CEM3 | ±41 | ||||||
IRMIN | Minimum Operating Current | TA = TJ = 25°C | 52 | 68 | μA | ||
Industrial temperature range, TA = TJ = TMIN to TMAX |
73 | ||||||
Extended temperature range, TA = TJ = TMIN to TMAX |
78 | ||||||
ΔVR/ΔT | Average reverse breakdown voltage temperature coefficient(5) | IR = 10 mA | ±30 | ppm/°C | |||
IR = 1 mA | ±20 | ||||||
IR = 100 μA, TA = TJ = 25°C | ±20 | ||||||
IR = 100 μA, TA = TJ = TMIN to TMAX |
±50 | ||||||
ΔVR/ΔIR | Reverse breakdown voltage change with operating current change(6) | IRMIN ≤ IR ≤ 1 mA, TA = TJ = 25°C | 0.2 | 0.9 | mV | ||
IRMIN ≤ IR ≤ 1 mA, TA = TJ = TMIN to TMAX |
1.2 | ||||||
1 mA ≤ IR ≤ 15 mA, TA = TJ = 25°C | 2 | 7 | |||||
1 mA ≤ IR ≤ 15 mA, TA = TJ = TMIN to TMAX |
10 | ||||||
ZR | Reverse dynamic impedance | IR = 1 mA, f = 120 Hz, IAC = 0.1 IR | 0.5 | Ω | |||
eN | Wideband noise | IR = 100 μA, 10 Hz ≤ f ≤ 10 kHz | 93 | μVrms | |||
ΔVR | Reverse breakdown voltage long term stability | t = 1000 hrs, T = 25°C ±0.1°C, IR = 100 μA | 120 | ppm | |||
VHYST | Thermal hysteresis(7) | ΔT = −40°C to 125°C | 1.148 | mV |
PARAMETER | TEST CONDITIONS | MIN(4) | TYP(3) | MAX(4) | UNIT | ||
---|---|---|---|---|---|---|---|
VR | Reverse Breakdown Voltage | IR = 100 μA | 5 | V | |||
Reverse Breakdown Voltage Tolerance(5) | IR = 100 μA | LM4050AIM3, LM4050AEM3 | ±5 | mV | |||
LM4050BIM3. LM4050BEM3 | ±10 | ||||||
LM4050CIM3, LM4050CEM3 | ±25 | ||||||
Industrial Temp. Range TA = TJ = TMIN to TMAX |
LM4050AIM3, LM4050AEM3 | ±22 | |||||
LM4050BIM3, LM4050BEM3 | ±27 | ||||||
LM4050CIM3, LM4050CEM3 | ±42 | ||||||
Extended Temp. Range TA = TJ = TMIN to TMAX |
LM4050AIM3, LM4050AEM3 | ±30 | |||||
LM4050BIM3, LM4050BEM3 | ±35 | ||||||
LM4050CIM3, LM4050CEM3 | ±50 | ||||||
IRMIN | Minimum Operating Current | TA = TJ = 25°C | 56 | 74 | μA | ||
Industrial Temp. Range TA = TJ = TMIN to TMAX |
80 | ||||||
Extended Temp. Range TA = TJ = TMIN to TMAX |
90 | ||||||
ΔVR/ΔT | Average Reverse Breakdown Voltage Temperature Coefficient(5) | IR = 10 mA | ±30 | ppm/°C | |||
IR = 1 mA | ±20 | ||||||
IR = 100 μA, TA = TJ = 25°C | ±20 | ||||||
IR = 100 μA TA = TJ = TMIN to TMAX |
±50 | ||||||
ΔVR/ΔIR | Reverse Breakdown Voltage Change with Operating Current Change(6) | IRMIN ≤ IR ≤ 1 mA, TA = TJ = 25°C | 0.2 | 1 | mV | ||
IRMIN ≤ IR ≤ 1 mA TA = TJ = TMIN to TMAX |
1.4 | ||||||
1 mA ≤ IR ≤ 15 mA, TA = TJ = 25°C | 2 | 8 | |||||
1 mA ≤ IR ≤ 15 mA TA = TJ = TMIN to TMAX |
12 | ||||||
ZR | Reverse Dynamic Impedance | IR = 1 mA, f = 120 Hz | 0.5 | Ω | |||
IAC = 0.1 IR | |||||||
eN | Wideband Noise | IR = 100 μA 10 Hz ≤ f ≤ 10 kHz |
93 | μVrms | |||
ΔVR | Reverse Breakdown Voltage Long Term Stability | t = 1000 hrs T = 25°C ±0.1°C IR = 100 μA |
120 | ppm | |||
VHYST | Thermal Hysteresis(7) | ΔT = –40°C to 125°C | 1.4 | mV |
PARAMETER | TEST CONDITIONS | MIN(4) | TYP(3) | MAX(4) | UNIT | ||
---|---|---|---|---|---|---|---|
VR | Reverse Breakdown Voltage | IR = 150 μA | 8.192 | V | |||
Reverse Breakdown Voltage Tolerance (5) | IR = 150 μA | LM4050AIM3, LM4050AEM3 | ±8.2 | mV | |||
LM4050BIM3, LM4050BEM3 | ±16 | ||||||
LM4050CIM3, LM4050CEM3 | ±41 | ||||||
Industrial Temp. Range TA = TJ = TMIN to TMAX |
LM4050AIM3, LM4050AEM3 | ±35 | |||||
LM4050BIM3, LM4050BEM3 | ±43 | ||||||
LM4050CIM3, LM4050CEM3 | ±68 | ||||||
Extended Temp. Range TA = TJ = TMIN to TMAX |
LM4050AIM3, LM4050AEM3 | ±49 | |||||
LM4050BIM3, LM4050BEM3 | ±57 | ||||||
LM4050CIM3, LM4050CEM3 | ±82 | ||||||
IRMIN | Minimum Operating Current | TA = TJ = 25°C | 74 | 91 | μA | ||
Industrial Temp. Range TA = TJ = TMIN to TMAX |
95 | ||||||
Extended Temp. Range TA = TJ = TMIN to TMAX |
100 | ||||||
ΔVR/ΔT | Average Reverse Breakdown Voltage Temperature Coefficient (5) | IR = 10 mA | ±40 | ppm/°C | |||
IR = 1 mA | ±20 | ||||||
IR = 150 μA, TA = TJ = 25°C | ±20 | ||||||
IR = 150 μA TA = TJ = TMIN to TMAX |
±50 | ||||||
ΔVR/ΔIR | Reverse Breakdown Voltage Change with Operating Current Change (6) | IRMIN ≤ IR ≤ 1 mA, TA = TJ = 25°C | 0.6 | 1.3 | mV | ||
IRMIN ≤ IR ≤ 1 mA TA = TJ = TMIN to TMAX |
2.5 | ||||||
1 mA ≤ IR ≤ 15 mA, TA = TJ = 25°C | 7 | 10 | |||||
1 mA ≤ IR ≤ 15 mA TA = TJ = TMIN to TMAX |
18 | ||||||
ZR | Reverse Dynamic Impedance | IR = 1 mA, f = 120 Hz, IAC = 0.1 IR |
0.6 | Ω | |||
eN | Wideband Noise | IR = 150 μA 10 Hz ≤ f ≤ 10 kHz |
150 | μVrms | |||
ΔVR | Reverse Breakdown Voltage Long Term Stability | t = 1000 hrs T = 25°C ±0.1°C IR = 150 μA |
120 | ppm | |||
VHYST | Thermal Hysteresis (7) |
ΔT = −40°C to 125°C | 2.3 | mV |
PARAMETER | TEST CONDITIONS | MIN(4) | TYP(3) | MAX(4) | UNIT | ||
---|---|---|---|---|---|---|---|
VR | Reverse Breakdown Voltage | IR = 150 μA | 10 | V | |||
Reverse Breakdown Voltage Tolerance (5) | IR = 150 μA | LM4050AIM3, LM4050AEM3 | ±10 | mV (max) | |||
LM4050BIM3, LM4050BEM3 | ±20 | ||||||
LM4050CIM3, LM4050CEM3 | ±50 | ||||||
Industrial Temp. Range TA = TJ = TMIN to TMAX |
LM4050AIM3, LM4050AEM3 | ±43 | |||||
LM4050BIM3, LM4050BEM3 | ±53 | ||||||
LM4050CIM3, LM4050CEM3 | ±83 | ||||||
Extended Temp. Range TA = TJ = TMIN to TMAX |
LM4050AIM3, LM4050AEM3 | ±60 | |||||
LM4050BIM3, LM4050BEM3 | ±70 | ||||||
LM4050CIM3, LM4050CEM3 | ±100 | ||||||
IRMIN | Minimum Operating Current | TA = TJ = 25°C | 80 | 100 | μA | ||
Industrial Temp. Range TA = TJ = TMIN to TMAX |
103 | ||||||
Extended Temp. Range TA = TJ = TMIN to TMAX |
110 | ||||||
ΔVR/ΔT | Average Reverse Breakdown Voltage Temperature Coefficient (5) | IR = 10 mA | ±40 | ppm/°C | |||
IR = 1 mA | ±20 | ||||||
IR = 150 μA, TA = TJ = 25°C | ±20 | ||||||
IR = 150 μA TA = TJ = TMIN to TMAX |
±50 | ||||||
ΔVR/ΔIR | Reverse Breakdown Voltage Change with Operating Current Change (6) | IRMIN ≤ IR ≤ 1 mA, TA = TJ = 25°C | 0.8 | 1.5 | mV | ||
IRMIN ≤ IR ≤ 1 mA TA = TJ = TMIN to TMAX |
3.5 | ||||||
1 mA ≤ IR ≤ 15 mA, TA = TJ = 25°C | 8 | 12 | |||||
1 mA ≤ IR ≤ 15 mA TA = TJ = TMIN to TMAX |
23 | ||||||
ZR | Reverse Dynamic Impedance | IR = 1 mA, f = 120 Hz, IAC = 0.1 IR |
0.7 | Ω | |||
eN | Wideband Noise | IR = 150 μA 10 Hz ≤ f ≤ 10 kHz |
150 | μVrms | |||
ΔVR | Reverse Breakdown Voltage Long Term Stability | t = 1000 hrs T = 25°C ±0.1°C IR = 150 μA |
120 | ppm | |||
VHYST | Thermal Hysteresis(7) | ΔT = −40°C to 125°C | 2.8 | mV |
The LM4050-N device is a precision micropower shunt voltage reference. The part comes in 6 different fixed-output voltage options for space-constrained applications, removing the need for feedback resistors. The voltage tolerance accuracies are ±0.1%, ±0.2%, and ±0.5% for Versions A, B, and C, respectively. The LM4050-N comes in two application versions, Industrial and Extended temperature range, which are operational from –40°C to 85°C and –40°C to 125°C, respectively.
The LM4050-N behaves as a high-precision Zener diode. The voltage is regulated between its cathode and anode which is dependent on the current being supplied to the cathode. This current is needed for the LM4050-N to regulate within the specified limits. Refer to the minimum and maximum operating requirements for the specific voltage option used. The LM4050-N is internally compensated to be stable without the use of an output capacitor. However, if desired, a bypass capacitor may be used.
The LM4050-N can only operate in closed loop due to the fact that the feedback resistors are internal to the device. Additionally, the output voltage cannot be adjusted for the same reason. The output voltage is regulated in a closed loop, provided the Rs (see Functional Block Diagram) resistor is sized to deliver the current to the cathode within the limits specified for the fixed-voltage version being used.