SN74LVTH162244

ACTIVE

Product details

Technology family LVT Supply voltage (min) (V) 2.7 Supply voltage (max) (V) 3.6 Number of channels 16 IOL (max) (mA) 12 Supply current (max) (µA) 5000 IOH (max) (mA) -12 Input type TTL-Compatible CMOS Output type 3-State Features Balanced outputs, Bus-hold, Over-voltage tolerant inputs, Partial power down (Ioff), Power up 3-state, Ultra high speed (tpd <5ns) Rating Catalog Operating temperature range (°C) -40 to 85
Technology family LVT Supply voltage (min) (V) 2.7 Supply voltage (max) (V) 3.6 Number of channels 16 IOL (max) (mA) 12 Supply current (max) (µA) 5000 IOH (max) (mA) -12 Input type TTL-Compatible CMOS Output type 3-State Features Balanced outputs, Bus-hold, Over-voltage tolerant inputs, Partial power down (Ioff), Power up 3-state, Ultra high speed (tpd <5ns) Rating Catalog Operating temperature range (°C) -40 to 85
SSOP (DL) 48 164.358 mm² 15.88 x 10.35 TSSOP (DGG) 48 101.25 mm² 12.5 x 8.1
  • Members of the Texas Instruments Widebus™ Family
  • Output Ports Have Equivalent 22- Series Resistors, So No External Resistors Are Required
  • Support Mixed-Mode Signal Operation (5-V Input and Output Voltages With 3.3-V VCC)
  • Support Unregulated Battery Operation Down to 2.7 V
  • Typical VOLP (Output Ground Bounce) <0.8 V at VCC = 3.3 V, TA = 25°C
  • Ioff and Power-Up 3-State Support Hot Insertion
  • Bus Hold on Data Inputs Eliminates the Need for External Pullup/Pulldown Resistors
  • Distributed VCC and GND Pins Minimize High-Speed Switching Noise
  • Flow-Through Architecture Optimizes PCB Layout
  • Latch-Up Performance Exceeds 500 mA Per JESD 17
  • ESD Protection Exceeds JESD 22
    • 2000-V Human-Body Model (A114-A)
    • 200-V Machine Model (A115-A)

Widebus is a trademark of Texas Instruments.

  • Members of the Texas Instruments Widebus™ Family
  • Output Ports Have Equivalent 22- Series Resistors, So No External Resistors Are Required
  • Support Mixed-Mode Signal Operation (5-V Input and Output Voltages With 3.3-V VCC)
  • Support Unregulated Battery Operation Down to 2.7 V
  • Typical VOLP (Output Ground Bounce) <0.8 V at VCC = 3.3 V, TA = 25°C
  • Ioff and Power-Up 3-State Support Hot Insertion
  • Bus Hold on Data Inputs Eliminates the Need for External Pullup/Pulldown Resistors
  • Distributed VCC and GND Pins Minimize High-Speed Switching Noise
  • Flow-Through Architecture Optimizes PCB Layout
  • Latch-Up Performance Exceeds 500 mA Per JESD 17
  • ESD Protection Exceeds JESD 22
    • 2000-V Human-Body Model (A114-A)
    • 200-V Machine Model (A115-A)

Widebus is a trademark of Texas Instruments.

The 'LVTH162244 devices are 16-bit buffers and line drivers designed for low-voltage (3.3-V) VCC operation, but with the capability to provide a TTL interface to a 5-V system environment. These devices can be used as four 4-bit buffers, two 8-bit buffers, or one 16-bit buffer. These devices provide true outputs and symmetrical active-low output-enable (OE) inputs.

The outputs, which are designed to source or sink up to 12 mA, include equivalent 22- series resistors to reduce overshoot and undershoot.

Active bus-hold circuitry holds unused or undriven inputs at a valid logic state. Use of pullup or pulldown resistors with the bus-hold circuitry is not recommended.

When VCC is between 0 and 1.5 V, the devices are in the high-impedance state during power up or power down. However, to ensure the high-impedance state above 1.5 V, OE should be tied to VCC through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

These devices are fully specified for hot-insertion applications using Ioff and power-up 3-state. The Ioff circuitry disables the outputs, preventing damaging current backflow through the devices when they are powered down. The power-up 3-state circuitry places the outputs in the high-impedance state during power up and power down, which prevents driver conflict.

The 'LVTH162244 devices are 16-bit buffers and line drivers designed for low-voltage (3.3-V) VCC operation, but with the capability to provide a TTL interface to a 5-V system environment. These devices can be used as four 4-bit buffers, two 8-bit buffers, or one 16-bit buffer. These devices provide true outputs and symmetrical active-low output-enable (OE) inputs.

The outputs, which are designed to source or sink up to 12 mA, include equivalent 22- series resistors to reduce overshoot and undershoot.

Active bus-hold circuitry holds unused or undriven inputs at a valid logic state. Use of pullup or pulldown resistors with the bus-hold circuitry is not recommended.

When VCC is between 0 and 1.5 V, the devices are in the high-impedance state during power up or power down. However, to ensure the high-impedance state above 1.5 V, OE should be tied to VCC through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

These devices are fully specified for hot-insertion applications using Ioff and power-up 3-state. The Ioff circuitry disables the outputs, preventing damaging current backflow through the devices when they are powered down. The power-up 3-state circuitry places the outputs in the high-impedance state during power up and power down, which prevents driver conflict.

Download View video with transcript Video

Similar products you might be interested in

open-in-new Compare alternates
Pin-for-pin with same functionality to the compared device
74ACT16244 ACTIVE 16-ch, 4.5-V to 5.5-V buffers with TTL-compatible CMOS inputs and 3-state outputs Voltage range (4.5V to 5.5V)
Similar functionality to the compared device
SN74LVC244A ACTIVE 8-ch, 1.65-V to 3.6-V buffers with 3-state outputs Lower average drive strength (24mA), longer average propagation delay (5.5ns)

Technical documentation

star =Top documentation for this product selected by TI
No results found. Please clear your search and try again.
View all 17
Type Title Date
* Data sheet SN54LVTH162244; SN74LVTH162244 datasheet (Rev. N) 01 Nov 2006
Application note Implications of Slow or Floating CMOS Inputs (Rev. E) 26 Jul 2021
Application note An Overview of Bus-Hold Circuit and the Applications (Rev. B) 17 Sep 2018
Selection guide Logic Guide (Rev. AB) 12 Jun 2017
Application note Understanding and Interpreting Standard-Logic Data Sheets (Rev. C) 02 Dec 2015
User guide LOGIC Pocket Data Book (Rev. B) 16 Jan 2007
Application note Semiconductor Packing Material Electrostatic Discharge (ESD) Protection 08 Jul 2004
Application note TI IBIS File Creation, Validation, and Distribution Processes 29 Aug 2002
Application note 16-Bit Widebus Logic Families in 56-Ball, 0.65-mm Pitch Very Thin Fine-Pitch BGA (Rev. B) 22 May 2002
Application note Power-Up 3-State (PU3S) Circuits in TI Standard Logic Devices 10 May 2002
Selection guide Advanced Bus Interface Logic Selection Guide 09 Jan 2001
Application note LVT-to-LVTH Conversion 08 Dec 1998
Application note LVT Family Characteristics (Rev. A) 01 Mar 1998
Application note Bus-Interface Devices With Output-Damping Resistors Or Reduced-Drive Outputs (Rev. A) 01 Aug 1997
Application note Input and Output Characteristics of Digital Integrated Circuits 01 Oct 1996
Application note Live Insertion 01 Oct 1996
Application note Understanding Advanced Bus-Interface Products Design Guide 01 May 1996

Design & development

For additional terms or required resources, click any title below to view the detail page where available.

Simulation model

HSPICE Model for SN74LVTH162244

SCEJ245.ZIP (111 KB) - HSpice Model
Simulation model

SN74LVTH162244 Behavioral SPICE Model

SCBM110.ZIP (7 KB) - PSpice Model
Simulation model

SN74LVTH162244 IBIS Model (Rev. D)

SCEM062D.ZIP (33 KB) - IBIS Model
Package Pins CAD symbols, footprints & 3D models
SSOP (DL) 48 Ultra Librarian
TSSOP (DGG) 48 Ultra Librarian

Ordering & quality

Information included:
  • RoHS
  • REACH
  • Device marking
  • Lead finish/Ball material
  • MSL rating/Peak reflow
  • MTBF/FIT estimates
  • Material content
  • Qualification summary
  • Ongoing reliability monitoring
Information included:
  • Fab location
  • Assembly location

Support & training

TI E2E™ forums with technical support from TI engineers

Content is provided "as is" by TI and community contributors and does not constitute TI specifications. See terms of use.

If you have questions about quality, packaging or ordering TI products, see TI support. ​​​​​​​​​​​​​​

Videos