Packaging information
Package | Pins TSSOP (PW) | 20 |
Operating temperature range (°C) -40 to 85 |
Package qty | Carrier 2,000 | LARGE T&R |
Features for the SN74LVTH241
- Support Mixed-Mode Signal Operation (5-V Input and Output Voltages With 3.3-V VCC)
- Support Unregulated Battery Operation Down to 2.7 V
- Typical VOLP (Output Ground Bounce)
<0.8 V at VCC = 3.3 V, TA = 25°C - Ioff and Power-Up 3-State Support Hot Insertion
- Bus Hold on Data Inputs Eliminates the Need for External Pullup/Pulldown Resistors
- Latch-Up Performance Exceeds 500 mA Per JESD 17
- ESD Protection Exceeds JESD 22
- 2000-V Human-Body Model (A114-A)
- 200-V Machine Model (A115-A)
Description for the SN74LVTH241
These octal buffers/drivers are designed specifically for low-voltage (3.3-V) VCC operation, with the capability to provide a TTL interface to a 5-V system environment.
The LVTH241 devices are organized as two 4-bit line drivers with separate output-enable (1OE\, 2OE) inputs. When 1OE\ is low or 2OE is high, the devices pass noninverted data from the A inputs to the Y outputs. When 1OE\ is high or 2OE is low, the outputs are in the high-impedance state.
Active bus-hold circuitry holds unused or undriven inputs at a valid logic state. Use of pullup or pulldown resistors with the bus-hold circuitry is not recommended.
When VCC is between 0 and 1.5 V, the devices are in the high-impedance state during power up or power down. However, to ensure the high-impedance state above 1.5 V, OE\ should be tied to VCC through a pullup resistor and OE should be tied to GND through a pulldown resistor; the minimum value of the resistor is determined by the current-sinking/current-sourcing capability of the driver.
These devices are fully specified for hot-insertion applications using Ioff and power-up 3-state. The Ioff circuitry disables the outputs, preventing damaging current backflow through the devices when they are powered down. The power-up 3-state circuitry places the outputs in the high-impedance state during power up and power down, which prevents driver conflict.