Home Power management Gate drivers Low-side drivers

UCC27538

ACTIVE

2.5-A/5-A single-channel gate driver with 8-V UVLO, 35-V VDD, and dual input

Product details

Number of channels 1 Power switch IGBT, MOSFET Peak output current (A) 5 Input supply voltage (min) (V) 10 Input supply voltage (max) (V) 32 Features Split Output Operating temperature range (°C) -40 to 140 Rise time (ns) 15 Fall time (ns) 7 Propagation delay time (µs) 0.017 Input threshold CMOS, TTL Channel input logic Dual, Non-Inverting Input negative voltage (V) -5 Rating Catalog Undervoltage lockout (typ) (V) 8 Driver configuration Dual, Non-Inverting
Number of channels 1 Power switch IGBT, MOSFET Peak output current (A) 5 Input supply voltage (min) (V) 10 Input supply voltage (max) (V) 32 Features Split Output Operating temperature range (°C) -40 to 140 Rise time (ns) 15 Fall time (ns) 7 Propagation delay time (µs) 0.017 Input threshold CMOS, TTL Channel input logic Dual, Non-Inverting Input negative voltage (V) -5 Rating Catalog Undervoltage lockout (typ) (V) 8 Driver configuration Dual, Non-Inverting
SOT-23 (DBV) 6 8.12 mm² 2.9 x 2.8
  • Low-cost gate driver (offering optimal solution for driving FET and IGBTs)
  • Superior replacement to discrete transistor pair drive (providing easy interface with controller)
  • TTL and CMOS compatible input logic threshold (independent of supply voltage)
  • Split output options allow for tuning of turnon and turnoff currents
  • Inverting and noninverting input configurations
  • Enable with fixed TTL compatible threshold
  • High 2.5-A source and 2.5-A or 5-A sink peak drive currents at 18-V VDD
  • Wide VDD range from 10 V to 35 V
  • Input and enable pins capable of with standing up to –5-V DC below ground
  • Output held low when inputs are floating or during VDD UVLO
  • Fast propagation delays (17-ns Typical)
  • Fast rise and fall times
    (15-ns and 7-ns typical with 1800-pF Load)
  • Undervoltage lockout (UVLO)
  • Used as a high-side or low-side driver (if designed with proper bias and signal isolation)
  • Low-cost, space-saving 5-pin or 6-pin DBV (SOT-23) package options
  • UCC27536 and UCC27537 pin-to-pin compatible to TPS2828 and TPS2829
  • Operating temperature range of –40°C to 140°C
  • Low-cost gate driver (offering optimal solution for driving FET and IGBTs)
  • Superior replacement to discrete transistor pair drive (providing easy interface with controller)
  • TTL and CMOS compatible input logic threshold (independent of supply voltage)
  • Split output options allow for tuning of turnon and turnoff currents
  • Inverting and noninverting input configurations
  • Enable with fixed TTL compatible threshold
  • High 2.5-A source and 2.5-A or 5-A sink peak drive currents at 18-V VDD
  • Wide VDD range from 10 V to 35 V
  • Input and enable pins capable of with standing up to –5-V DC below ground
  • Output held low when inputs are floating or during VDD UVLO
  • Fast propagation delays (17-ns Typical)
  • Fast rise and fall times
    (15-ns and 7-ns typical with 1800-pF Load)
  • Undervoltage lockout (UVLO)
  • Used as a high-side or low-side driver (if designed with proper bias and signal isolation)
  • Low-cost, space-saving 5-pin or 6-pin DBV (SOT-23) package options
  • UCC27536 and UCC27537 pin-to-pin compatible to TPS2828 and TPS2829
  • Operating temperature range of –40°C to 140°C

The UCC2753x single-channel, high-speed gate drivers can effectively drive MOSFET and IGBT power switches. Using a design that allows for a source of up to 2.5 A and 5-A sink through asymmetrical drive (split outputs), coupled with the ability to support a negative turn-off bias, rail-to-rail drive capability, extremely small propagation delay (17 ns typical), the UCC2753x devices are ideal solutions for MOSFET and IGBT power switches. The UCC2753x family of devices can also support enable, dual input, and inverting and non-inverting input functionality. The split outputs and strong asymmetrical drive boost the devices immunity against parasitic Miller turn-on effect and can help reduce ground debouncing.

Leaving the input pin open holds the driver output low. The logic behavior of the driver is shown in the application diagram, timing diagram, and input and output logic truth table.

Internal circuitry on VDD pin provides an undervoltage lockout function that holds output low until VDD supply voltage is within operating range.

The UCC2753x single-channel, high-speed gate drivers can effectively drive MOSFET and IGBT power switches. Using a design that allows for a source of up to 2.5 A and 5-A sink through asymmetrical drive (split outputs), coupled with the ability to support a negative turn-off bias, rail-to-rail drive capability, extremely small propagation delay (17 ns typical), the UCC2753x devices are ideal solutions for MOSFET and IGBT power switches. The UCC2753x family of devices can also support enable, dual input, and inverting and non-inverting input functionality. The split outputs and strong asymmetrical drive boost the devices immunity against parasitic Miller turn-on effect and can help reduce ground debouncing.

Leaving the input pin open holds the driver output low. The logic behavior of the driver is shown in the application diagram, timing diagram, and input and output logic truth table.

Internal circuitry on VDD pin provides an undervoltage lockout function that holds output low until VDD supply voltage is within operating range.

Download View video with transcript Video

Technical documentation

Design & development

For additional terms or required resources, click any title below to view the detail page where available.

Evaluation board

UCC27531EVM-184 — UCC27531 Evaluation Module

The UCC27531EVM-184 is a fully isolated Gate Driver Daughter Card that provides a test platform for a quick and easy evaluation of the UCC27531DBV driver. Powered by a single +12V external supply, and featuring a comprehensive set of test points and jumpers, this EVM can be used for the evaluation (...)
User guide: PDF
Not available on TI.com
Simulation model

UCC27538 PSpice Transient Model

SLUM376.ZIP (108 KB) - PSpice Model
Simulation model

UCC27538 Unencrypted PSpice Transient Model

SLUM485.ZIP (2 KB) - PSpice Model
Calculation tool

SLURB21 UCC2753X Schematic Review Template

Supported products & hardware

Supported products & hardware

Products
Low-side drivers
UCC27531 2.5-A/5-A single-channel gate driver with 8-V UVLO, 35-V VDD, and split outputs UCC27531-Q1 Automotive 2.5-A/5-A single-channel gate driver with 8-V UVLO, 35-V VDD, and split outputs UCC27532 2.5-A/5-A single-channel gate driver with 8-V UVLO, 35-V VDD, CMOS inputs, and split outputs UCC27532-Q1 Automotive 2.5-A/5-A single-channel gate driver with 8-V UVLO, 35-V VDD, and CMOS inputs UCC27533 2.5-A/5-A single-channel gate driver with 8-V UVLO, 35-V VDD, and inverting/non-inverting inputs UCC27536 2.5-A/5-A single-channel gate driver with 8-V UVLO, 35-V VDD, and inverting input UCC27537 2.5-A/5-A single-channel gate driver with 8-V UVLO, 35-V VDD, and EN pin UCC27538 2.5-A/5-A single-channel gate driver with 8-V UVLO, 35-V VDD, and dual input
Simulation tool

PSPICE-FOR-TI — PSpice® for TI design and simulation tool

PSpice® for TI is a design and simulation environment that helps evaluate functionality of analog circuits. This full-featured, design and simulation suite uses an analog analysis engine from Cadence®. Available at no cost, PSpice for TI includes one of the largest model libraries in the (...)
Package Pins CAD symbols, footprints & 3D models
SOT-23 (DBV) 6 Ultra Librarian

Ordering & quality

Information included:
  • RoHS
  • REACH
  • Device marking
  • Lead finish/Ball material
  • MSL rating/Peak reflow
  • MTBF/FIT estimates
  • Material content
  • Qualification summary
  • Ongoing reliability monitoring
Information included:
  • Fab location
  • Assembly location

Recommended products may have parameters, evaluation modules or reference designs related to this TI product.

Support & training

TI E2E™ forums with technical support from TI engineers

Content is provided "as is" by TI and community contributors and does not constitute TI specifications. See terms of use.

If you have questions about quality, packaging or ordering TI products, see TI support. ​​​​​​​​​​​​​​

Videos