SMOMAPL138B-HIREL

現行

產品詳細資料

Arm CPU 1 Arm9 Arm (max) (MHz) 456 Coprocessors C674x DSP CPU 32-bit Display type 1 LCD Protocols Ethernet Ethernet MAC 1-Port 10/100 Hardware accelerators PRUSS Operating system Linux, RTOS Security Device identity, Memory protection Rating Military Operating temperature range (°C) -40 to 105
Arm CPU 1 Arm9 Arm (max) (MHz) 456 Coprocessors C674x DSP CPU 32-bit Display type 1 LCD Protocols Ethernet Ethernet MAC 1-Port 10/100 Hardware accelerators PRUSS Operating system Linux, RTOS Security Device identity, Memory protection Rating Military Operating temperature range (°C) -40 to 105
NFBGA (GWT) 361 256 mm² 16 x 16
  • Highlights
    • Dual Core SoC
      • 375-MHz ARM926EJ-S™ RISC MPU
      • 375-MHz 674x Fixed/Floating-Point VLIW DSP
    • Enhanced Direct-Memory-Access Controller (EDMA3)
    • Serial ATA (SATA) Controller
    • DDR2/Mobile DDR Memory Controller
    • Two Multimedia Card (MMC)/Secure Digital (SD) Card Interface
    • LCD Controller
    • Video Port Interface (VPIF)
    • 10/100 Mb/s Ethernet MAC (EMAC):
    • Programmable Real-Time Unit Subsystem
    • Three Configurable UART Modules
    • USB 1.1 OHCI (Host) With Integrated PHY
    • USB 2.0 OTG Port With Integrated PHY
    • One Multichannel Audio Serial Port
    • Two Multichannel Buffered Serial Ports
  • Dual Core SoC
    • 375-MHz ARM926EJ-S™ RISC MPU
    • 375-MHz C674x VLIW DSP
  • ARM926EJ-S Core
    • 32-Bit and 16-Bit (Thumb®) Instructions
    • DSP Instruction Extensions
    • Single Cycle MAC
    • ARM® Jazelle® Technology
    • EmbeddedICE-RT™ for Real-Time Debug
  • ARM9 Memory Architecture
    • 16K-Byte Instruction Cache
    • 16K-Byte Data Cache
    • 8K-Byte RAM (Vector Table)
    • 64K-Byte ROM
  • C674x Instruction Set Features
    • Superset of the C67x+™ and C64x+™ ISAs
    • Up to C674x MIPS/MFLOPS
    • Byte-Addressable (8-/16-/32-/64-Bit Data)
    • 8-Bit Overflow Protection
    • Bit-Field Extract, Set, Clear
    • Normalization, Saturation, Bit-Counting
    • Compact 16-Bit Instructions
  • C674x Two Level Cache Memory Architecture
    • 32K-Byte L1P Program RAM/Cache
    • 32K-Byte L1D Data RAM/Cache
    • 256K-Byte L2 Unified Mapped RAM/Cache
    • Flexible RAM/Cache Partition (L1 and L2)
  • Enhanced Direct-Memory-Access Controller 3 (EDMA3):
    • 2 Channel Controllers
    • 3 Transfer Controllers
    • 64 Independent DMA Channels
    • 16 Quick DMA Channels
    • Programmable Transfer Burst Size
  • TMS320C674x Floating-Point VLIW DSP Core
    • Load-Store Architecture With Non-Aligned Support
    • 64 General-Purpose Registers (32 Bit)
    • Six ALU (32-/40-Bit) Functional Units
      • Supports 32-Bit Integer, SP (IEEE Single Precision/32-Bit) and DP (IEEE Double Precision/64-Bit) Floating Point
      • Supports up to Four SP Additions Per Clock, Four DP Additions Every 2 Clocks
      • Supports up to Two Floating Point (SP or DP) Reciprocal Approximation (RCPxP) and Square-Root Reciprocal Approximation (RSQRxP) Operations Per Cycle
    • Two Multiply Functional Units
      • Mixed-Precision IEEE Floating Point Multiply Supported up to:
        • 2 SP x SP -> SP Per Clock
        • 2 SP x SP -> DP Every Two Clocks
        • 2 SP x DP -> DP Every Three Clocks
        • 2 DP x DP -> DP Every Four Clocks
      • Fixed Point Multiply Supports Two 32 x 32-Bit Multiplies, Four 16 x 16-Bit Multiplies, or Eight 8 x 8-Bit Multiplies per Clock Cycle, and Complex Multiples
    • Instruction Packing Reduces Code Size
    • All Instructions Conditional
    • Hardware Support for Modulo Loop Operation
    • Protected Mode Operation
    • Exceptions Support for Error Detection and Program Redirection
  • Software Support
    • TI DSP/BIOS™
    • Chip Support Library and DSP Library
  • 128K-Byte RAM Shared Memory
  • 1.8V or 3.3V LVCMOS IOs (except for USB and DDR2 interfaces)
  • Two External Memory Interfaces:
    • EMIFA
      • NOR (8-/16-Bit-Wide Data)
      • NAND (8-/16-Bit-Wide Data)
      • 16-Bit SDRAM With 128 MB Address Space
    • DDR2/Mobile DDR Memory Controller
      • 16-Bit DDR2 SDRAM With 512 MB Address Space or
      • 16-Bit mDDR SDRAM With 256 MB Address Space
  • Three Configurable 16550 type UART Modules:
    • With Modem Control Signals
    • 16-byte FIFO
    • 16x or 13x Oversampling Option
  • LCD Controller
  • Two Serial Peripheral Interfaces (SPI) Each With Multiple Chip-Selects
  • Two Multimedia Card (MMC)/Secure Digital (SD) Card Interface with Secure Data I/O (SDIO) Interfaces
  • Two Master/Slave Inter-Integrated Circuit (I2C Bus™)
  • One Host-Port Interface (HPI) With 16-Bit-Wide Muxed Address/Data Bus For High Bandwidth
  • Programmable Real-Time Unit Subsystem (PRUSS)
    • Two Independent Programmable Realtime Unit (PRU) Cores
      • 32-Bit Load/Store RISC architecture
      • 4K Byte instruction RAM per core
      • 512 Bytes data RAM per core
      • PRU Subsystem (PRUSS) can be disabled via software to save power
      • Register 30 of each PRU is exported from the subsystem in addition to the normal R31 output of the PRU cores.
    • Standard power management mechanism
      • Clock gating
      • Entire subsystem under a single PSC clock gating domain
    • Dedicated interrupt controller
    • Dedicated switched central resource
  • USB 1.1 OHCI (Host) With Integrated PHY (USB1)
  • USB 2.0 OTG Port With Integrated PHY (USB0)
    • USB 2.0 High-/Full-Speed Client
    • USB 2.0 High-/Full-/Low-Speed Host
    • End Point 0 (Control)
    • End Points 1,2,3,4 (Control, Bulk, Interrupt or ISOC) Rx and Tx
  • One Multichannel Audio Serial Port:
    • Two Clock Zones and 16 Serial Data Pins
    • Supports TDM, I2S, and Similar Formats
    • DIT-Capable
    • FIFO buffers for Transmit and Receive
  • Two Multichannel Buffered Serial Ports:
    • Supports TDM, I2S, and Similar Formats
    • AC97 Audio Codec Interface
    • Telecom Interfaces (ST-Bus, H100)
    • 128-channel TDM
    • FIFO buffers for Transmit and Receive
  • 10/100 Mb/s Ethernet MAC (EMAC):
    • IEEE 802.3 Compliant
    • MII Media Independent Interface
    • RMII Reduced Media Independent Interface
    • Management Data I/O (MDIO) Module
  • Video Port Interface (VPIF):
    • Two 8-bit SD (BT.656), Single 16-bit or Single Raw (8-/10-/12-bit) Video Capture Channels
    • Two 8-bit SD (BT.656), Single 16-bit Video Display Channels
  • Universal Parallel Port (uPP):
    • High-Speed Parallel Interface to FPGAs and Data Converters
    • Data Width on Each of Two Channels is 8- to 16-bit Inclusive
    • Single Data Rate or Dual Data Rate Transfers
    • Supports Multiple Interfaces with START, ENABLE and WAIT Controls
  • Serial ATA (SATA) Controller:
    • Supports SATA I (1.5 Gbps) and SATA II (3.0 Gbps)
    • Supports all SATA Power Management Features
    • Hardware-Assisted Native Command Queueing (NCQ) for up to 32 Entries
    • Supports Port Multiplier and Command-Based Switching
  • Real-Time Clock With 32 KHz Oscillator and Separate Power Rail
  • Three 64-Bit General-Purpose Timers (Each configurable as Two 32-Bit Timers)
  • One 64-bit General-Purpose/Watchdog Timer (Configurable as Two 32-bit General-Purpose Timers)
  • Two Enhanced Pulse Width Modulators (eHRPWM):
    • Dedicated 16-Bit Time-Base Counter With Period And Frequency Control
    • 6 Single Edge, 6 Dual Edge Symmetric or 3 Dual Edge Asymmetric Outputs
    • Dead-Band Generation
    • PWM Chopping by High-Frequency Carrier
    • Trip Zone Input
  • Three 32-Bit Enhanced Capture Modules (eCAP):
    • Configurable as 3 Capture Inputs or 3 Auxiliary Pulse Width Modulator (APWM) outputs
    • Single Shot Capture of up to Four Event Time-Stamps
  • 361-Ball Plastic Ball Grid Array (PBGA) [GWT Suffix], 0.80-mm Ball Pitch
  • Commercial, Extended or Industrial Temperature
  • Community Resources
    • TI E2E Community
    • TI Embedded Processors Wiki

TMS320C6000 is a trademark of Texas Instruments.

  • Highlights
    • Dual Core SoC
      • 375-MHz ARM926EJ-S™ RISC MPU
      • 375-MHz 674x Fixed/Floating-Point VLIW DSP
    • Enhanced Direct-Memory-Access Controller (EDMA3)
    • Serial ATA (SATA) Controller
    • DDR2/Mobile DDR Memory Controller
    • Two Multimedia Card (MMC)/Secure Digital (SD) Card Interface
    • LCD Controller
    • Video Port Interface (VPIF)
    • 10/100 Mb/s Ethernet MAC (EMAC):
    • Programmable Real-Time Unit Subsystem
    • Three Configurable UART Modules
    • USB 1.1 OHCI (Host) With Integrated PHY
    • USB 2.0 OTG Port With Integrated PHY
    • One Multichannel Audio Serial Port
    • Two Multichannel Buffered Serial Ports
  • Dual Core SoC
    • 375-MHz ARM926EJ-S™ RISC MPU
    • 375-MHz C674x VLIW DSP
  • ARM926EJ-S Core
    • 32-Bit and 16-Bit (Thumb®) Instructions
    • DSP Instruction Extensions
    • Single Cycle MAC
    • ARM® Jazelle® Technology
    • EmbeddedICE-RT™ for Real-Time Debug
  • ARM9 Memory Architecture
    • 16K-Byte Instruction Cache
    • 16K-Byte Data Cache
    • 8K-Byte RAM (Vector Table)
    • 64K-Byte ROM
  • C674x Instruction Set Features
    • Superset of the C67x+™ and C64x+™ ISAs
    • Up to C674x MIPS/MFLOPS
    • Byte-Addressable (8-/16-/32-/64-Bit Data)
    • 8-Bit Overflow Protection
    • Bit-Field Extract, Set, Clear
    • Normalization, Saturation, Bit-Counting
    • Compact 16-Bit Instructions
  • C674x Two Level Cache Memory Architecture
    • 32K-Byte L1P Program RAM/Cache
    • 32K-Byte L1D Data RAM/Cache
    • 256K-Byte L2 Unified Mapped RAM/Cache
    • Flexible RAM/Cache Partition (L1 and L2)
  • Enhanced Direct-Memory-Access Controller 3 (EDMA3):
    • 2 Channel Controllers
    • 3 Transfer Controllers
    • 64 Independent DMA Channels
    • 16 Quick DMA Channels
    • Programmable Transfer Burst Size
  • TMS320C674x Floating-Point VLIW DSP Core
    • Load-Store Architecture With Non-Aligned Support
    • 64 General-Purpose Registers (32 Bit)
    • Six ALU (32-/40-Bit) Functional Units
      • Supports 32-Bit Integer, SP (IEEE Single Precision/32-Bit) and DP (IEEE Double Precision/64-Bit) Floating Point
      • Supports up to Four SP Additions Per Clock, Four DP Additions Every 2 Clocks
      • Supports up to Two Floating Point (SP or DP) Reciprocal Approximation (RCPxP) and Square-Root Reciprocal Approximation (RSQRxP) Operations Per Cycle
    • Two Multiply Functional Units
      • Mixed-Precision IEEE Floating Point Multiply Supported up to:
        • 2 SP x SP -> SP Per Clock
        • 2 SP x SP -> DP Every Two Clocks
        • 2 SP x DP -> DP Every Three Clocks
        • 2 DP x DP -> DP Every Four Clocks
      • Fixed Point Multiply Supports Two 32 x 32-Bit Multiplies, Four 16 x 16-Bit Multiplies, or Eight 8 x 8-Bit Multiplies per Clock Cycle, and Complex Multiples
    • Instruction Packing Reduces Code Size
    • All Instructions Conditional
    • Hardware Support for Modulo Loop Operation
    • Protected Mode Operation
    • Exceptions Support for Error Detection and Program Redirection
  • Software Support
    • TI DSP/BIOS™
    • Chip Support Library and DSP Library
  • 128K-Byte RAM Shared Memory
  • 1.8V or 3.3V LVCMOS IOs (except for USB and DDR2 interfaces)
  • Two External Memory Interfaces:
    • EMIFA
      • NOR (8-/16-Bit-Wide Data)
      • NAND (8-/16-Bit-Wide Data)
      • 16-Bit SDRAM With 128 MB Address Space
    • DDR2/Mobile DDR Memory Controller
      • 16-Bit DDR2 SDRAM With 512 MB Address Space or
      • 16-Bit mDDR SDRAM With 256 MB Address Space
  • Three Configurable 16550 type UART Modules:
    • With Modem Control Signals
    • 16-byte FIFO
    • 16x or 13x Oversampling Option
  • LCD Controller
  • Two Serial Peripheral Interfaces (SPI) Each With Multiple Chip-Selects
  • Two Multimedia Card (MMC)/Secure Digital (SD) Card Interface with Secure Data I/O (SDIO) Interfaces
  • Two Master/Slave Inter-Integrated Circuit (I2C Bus™)
  • One Host-Port Interface (HPI) With 16-Bit-Wide Muxed Address/Data Bus For High Bandwidth
  • Programmable Real-Time Unit Subsystem (PRUSS)
    • Two Independent Programmable Realtime Unit (PRU) Cores
      • 32-Bit Load/Store RISC architecture
      • 4K Byte instruction RAM per core
      • 512 Bytes data RAM per core
      • PRU Subsystem (PRUSS) can be disabled via software to save power
      • Register 30 of each PRU is exported from the subsystem in addition to the normal R31 output of the PRU cores.
    • Standard power management mechanism
      • Clock gating
      • Entire subsystem under a single PSC clock gating domain
    • Dedicated interrupt controller
    • Dedicated switched central resource
  • USB 1.1 OHCI (Host) With Integrated PHY (USB1)
  • USB 2.0 OTG Port With Integrated PHY (USB0)
    • USB 2.0 High-/Full-Speed Client
    • USB 2.0 High-/Full-/Low-Speed Host
    • End Point 0 (Control)
    • End Points 1,2,3,4 (Control, Bulk, Interrupt or ISOC) Rx and Tx
  • One Multichannel Audio Serial Port:
    • Two Clock Zones and 16 Serial Data Pins
    • Supports TDM, I2S, and Similar Formats
    • DIT-Capable
    • FIFO buffers for Transmit and Receive
  • Two Multichannel Buffered Serial Ports:
    • Supports TDM, I2S, and Similar Formats
    • AC97 Audio Codec Interface
    • Telecom Interfaces (ST-Bus, H100)
    • 128-channel TDM
    • FIFO buffers for Transmit and Receive
  • 10/100 Mb/s Ethernet MAC (EMAC):
    • IEEE 802.3 Compliant
    • MII Media Independent Interface
    • RMII Reduced Media Independent Interface
    • Management Data I/O (MDIO) Module
  • Video Port Interface (VPIF):
    • Two 8-bit SD (BT.656), Single 16-bit or Single Raw (8-/10-/12-bit) Video Capture Channels
    • Two 8-bit SD (BT.656), Single 16-bit Video Display Channels
  • Universal Parallel Port (uPP):
    • High-Speed Parallel Interface to FPGAs and Data Converters
    • Data Width on Each of Two Channels is 8- to 16-bit Inclusive
    • Single Data Rate or Dual Data Rate Transfers
    • Supports Multiple Interfaces with START, ENABLE and WAIT Controls
  • Serial ATA (SATA) Controller:
    • Supports SATA I (1.5 Gbps) and SATA II (3.0 Gbps)
    • Supports all SATA Power Management Features
    • Hardware-Assisted Native Command Queueing (NCQ) for up to 32 Entries
    • Supports Port Multiplier and Command-Based Switching
  • Real-Time Clock With 32 KHz Oscillator and Separate Power Rail
  • Three 64-Bit General-Purpose Timers (Each configurable as Two 32-Bit Timers)
  • One 64-bit General-Purpose/Watchdog Timer (Configurable as Two 32-bit General-Purpose Timers)
  • Two Enhanced Pulse Width Modulators (eHRPWM):
    • Dedicated 16-Bit Time-Base Counter With Period And Frequency Control
    • 6 Single Edge, 6 Dual Edge Symmetric or 3 Dual Edge Asymmetric Outputs
    • Dead-Band Generation
    • PWM Chopping by High-Frequency Carrier
    • Trip Zone Input
  • Three 32-Bit Enhanced Capture Modules (eCAP):
    • Configurable as 3 Capture Inputs or 3 Auxiliary Pulse Width Modulator (APWM) outputs
    • Single Shot Capture of up to Four Event Time-Stamps
  • 361-Ball Plastic Ball Grid Array (PBGA) [GWT Suffix], 0.80-mm Ball Pitch
  • Commercial, Extended or Industrial Temperature
  • Community Resources
    • TI E2E Community
    • TI Embedded Processors Wiki

TMS320C6000 is a trademark of Texas Instruments.

This device is a Low-power applications processor based on an ARM926EJ-S and a C674x DSP core. It provides significantly lower power than other members of the TMS320C6000 platform of DSPs.

This device enables OEMs and ODMs to quickly bring to market devices featuring robust operating systems support, rich user interfaces, and high processing performance life through the maximum flexibility of a fully integrated mixed processor solution.

The dual-core architecture of the device provides benefits of both DSP and Reduced Instruction Set Computer (RISC) technologies, incorporating a high-performance TMS320C674x DSP core and an ARM926EJ-S core.

The ARM926EJ-S is a 32-bit RISC processor core that performs 32-bit or 16-bit instructions and processes 32-bit, 16-bit, or 8-bit data. The core uses pipelining so that all parts of the processor and memory system can operate continuously.

The ARM core has a coprocessor 15 (CP15), protection module, and Data and program Memory Management Units (MMUs) with table look-aside buffers. It has separate 16K-byte instruction and 16K-byte data caches. Both are four-way associative with virtual index virtual tag (VIVT). The ARM core also has a 8KB RAM (Vector Table) and 64KB ROM.

The device DSP core uses a two-level cache-based architecture. The Level 1 program cache (L1P) is a 32KB direct mapped cache and the Level 1 data cache (L1D) is a 32KB 2-way set-associative cache. The Level 2 program cache (L2P) consists of a 256KB memory space that is shared between program and data space. L2 memory can be configured as mapped memory, cache, or combinations of the two. Although the DSP L2 is accessible by ARM and other hosts in the system, an additional 128KB RAM shared memory is available for use by other hosts without affecting DSP performance.

The peripheral set includes: a 10/100 Mb/s Ethernet MAC (EMAC) with a Management Data Input/Output (MDIO) module; one USB2.0 OTG interface; one USB1.1 OHCI interface; two inter-integrated circuit (I2C) Bus interfaces; one multichannel audio serial port (McASP) with 16 serializers and FIFO buffers; two multichannel buffered serial ports (McBSP) with FIFO buffers; two SPI interfaces with multiple chip selects; four 64-bit general-purpose timers each configurable (one configurable as watchdog); a configurable 16-bit host port interface (HPI) ; up to 9 banks of 16 pins of general-purpose input/output (GPIO) with programmable interrupt/event generation modes, multiplexed with other peripherals; three UART interfaces (each with RTS and CTS); two enhanced high-resolution pulse width modulator (eHRPWM) peripherals; 3 32-bit enhanced capture (eCAP) module peripherals which can be configured as 3 capture inputs or 3 auxiliary pulse width modulator (APWM) outputs; and 2 external memory interfaces: an asynchronous and SDRAM external memory interface (EMIFA) for slower memories or peripherals, and a higher speed DDR2/Mobile DDR controller.

The Ethernet Media Access Controller (EMAC) provides an efficient interface between the device and a network. The EMAC supports both 10Base-T and 100Base-TX, or 10 Mbits/second (Mbps) and 100 Mbps in either half- or full-duplex mode. Additionally an Management Data Input/Output (MDIO) interface is available for PHY configuration. The EMAC supports both MII and RMII interfaces.

The SATA controller provides a high-speed interface to mass data storage devices. The SATA controller supports both SATA I (1.5 Gbps) and SATA II (3.0 Gbps).

The Universal Parallel Port (uPP) provides a high-speed interface to many types of data converters, FPGAs or other parallel devices. The UPP supports programmable data widths between 8- to 16-bits on each of two channels. Single-data rate and double-data rate transfers are supported as well as START, ENABLE and WAIT signals to provide control for a variety of data converters.

A Video Port Interface (VPIF) is included providing a flexible video input/output port.

The rich peripheral set provides the ability to control external peripheral devices and communicate with external processors. For details on each of the peripherals, see the related sections later in this document and the associated peripheral reference guides.

This device has a complete set of development tools for the ARM and DSP. These include C compilers, a DSP assembly optimizer to simplify programming and scheduling, and a Windows™ debugger interface for visibility into source code execution.

This device is a Low-power applications processor based on an ARM926EJ-S and a C674x DSP core. It provides significantly lower power than other members of the TMS320C6000 platform of DSPs.

This device enables OEMs and ODMs to quickly bring to market devices featuring robust operating systems support, rich user interfaces, and high processing performance life through the maximum flexibility of a fully integrated mixed processor solution.

The dual-core architecture of the device provides benefits of both DSP and Reduced Instruction Set Computer (RISC) technologies, incorporating a high-performance TMS320C674x DSP core and an ARM926EJ-S core.

The ARM926EJ-S is a 32-bit RISC processor core that performs 32-bit or 16-bit instructions and processes 32-bit, 16-bit, or 8-bit data. The core uses pipelining so that all parts of the processor and memory system can operate continuously.

The ARM core has a coprocessor 15 (CP15), protection module, and Data and program Memory Management Units (MMUs) with table look-aside buffers. It has separate 16K-byte instruction and 16K-byte data caches. Both are four-way associative with virtual index virtual tag (VIVT). The ARM core also has a 8KB RAM (Vector Table) and 64KB ROM.

The device DSP core uses a two-level cache-based architecture. The Level 1 program cache (L1P) is a 32KB direct mapped cache and the Level 1 data cache (L1D) is a 32KB 2-way set-associative cache. The Level 2 program cache (L2P) consists of a 256KB memory space that is shared between program and data space. L2 memory can be configured as mapped memory, cache, or combinations of the two. Although the DSP L2 is accessible by ARM and other hosts in the system, an additional 128KB RAM shared memory is available for use by other hosts without affecting DSP performance.

The peripheral set includes: a 10/100 Mb/s Ethernet MAC (EMAC) with a Management Data Input/Output (MDIO) module; one USB2.0 OTG interface; one USB1.1 OHCI interface; two inter-integrated circuit (I2C) Bus interfaces; one multichannel audio serial port (McASP) with 16 serializers and FIFO buffers; two multichannel buffered serial ports (McBSP) with FIFO buffers; two SPI interfaces with multiple chip selects; four 64-bit general-purpose timers each configurable (one configurable as watchdog); a configurable 16-bit host port interface (HPI) ; up to 9 banks of 16 pins of general-purpose input/output (GPIO) with programmable interrupt/event generation modes, multiplexed with other peripherals; three UART interfaces (each with RTS and CTS); two enhanced high-resolution pulse width modulator (eHRPWM) peripherals; 3 32-bit enhanced capture (eCAP) module peripherals which can be configured as 3 capture inputs or 3 auxiliary pulse width modulator (APWM) outputs; and 2 external memory interfaces: an asynchronous and SDRAM external memory interface (EMIFA) for slower memories or peripherals, and a higher speed DDR2/Mobile DDR controller.

The Ethernet Media Access Controller (EMAC) provides an efficient interface between the device and a network. The EMAC supports both 10Base-T and 100Base-TX, or 10 Mbits/second (Mbps) and 100 Mbps in either half- or full-duplex mode. Additionally an Management Data Input/Output (MDIO) interface is available for PHY configuration. The EMAC supports both MII and RMII interfaces.

The SATA controller provides a high-speed interface to mass data storage devices. The SATA controller supports both SATA I (1.5 Gbps) and SATA II (3.0 Gbps).

The Universal Parallel Port (uPP) provides a high-speed interface to many types of data converters, FPGAs or other parallel devices. The UPP supports programmable data widths between 8- to 16-bits on each of two channels. Single-data rate and double-data rate transfers are supported as well as START, ENABLE and WAIT signals to provide control for a variety of data converters.

A Video Port Interface (VPIF) is included providing a flexible video input/output port.

The rich peripheral set provides the ability to control external peripheral devices and communicate with external processors. For details on each of the peripherals, see the related sections later in this document and the associated peripheral reference guides.

This device has a complete set of development tools for the ARM and DSP. These include C compilers, a DSP assembly optimizer to simplify programming and scheduling, and a Windows™ debugger interface for visibility into source code execution.

下載 觀看有字幕稿的影片 影片

技術文件

star =TI 所選的此產品重要文件
找不到結果。請清除您的搜尋條件,然後再試一次。
檢視所有 5
類型 標題 日期
* Data sheet SMOMAPL138B-HIREL Low-Power Applications Processor datasheet (Rev. B) 2013年 7月 18日
* Errata OMAP-L138 C6000 DSP+ARM Processor (Revs 2.3, 2.1, 2.0, 1.1, & 1.0) Errata (Rev. M) 2014年 3月 21日
* Radiation & reliability report SMOMAPL138BGWTA3R Reliability Report 2012年 4月 9日
Application note Introduction to TMS320C6000 DSP Optimization 2011年 10月 6日
White paper Software and Hardware Design Challenges Due to Dynamic Raw NAND Market 2011年 5月 19日

設計與開發

如需其他條款或必要資源,請按一下下方的任何標題以檢視詳細頁面 (如有)。

偵錯探測器

TMDSEMU200-U — XDS200 USB 偵錯探測器

XDS200 是為 TI 嵌入式裝置偵錯的偵錯探測器 (模擬器)。與低成本 XDS110 和高效能 XDS560v2 相比,XDS200 是兼具低成本與優異效能的完美平衡,可在單一 pod 中支援各種標準 (IEEE1149.1、IEEE1149.7、SWD)。所有 XDS 偵錯探測器均支援具嵌入式追踪緩衝區 (ETB) 的 Arm® 與 DSP 處理器中的核心和系統追蹤功能。透過針腳進行核心追蹤則需要 XDS560v2 PRO TRACE

XDS200 透過 TI 20 針腳連接器 (配備適用 TI 14 針腳、Arm Cortex® 10 針腳和 Arm 20 針腳的多重轉接器) (...)

TI.com 無法提供
偵錯探測器

TMDSEMU560V2STM-U — XDS560v2 System Trace USB 偵錯探測器

XDS560v2 是 XDS560™ 偵錯探測器系列的最高性能表現,支援傳統 JTAG 標準 (IEEE1149.1) 和 cJTAG (IEEE1149.7)。請注意,序列線偵錯 (SWD) 不受支援。

所有 XDS 偵錯探測器均支援所有具有嵌入式追踪緩衝區 (ETB) 的 ARM 和 DSP 處理器中的核心和系統追蹤功能。對於針腳追蹤則需要 XDS560v2 PRO TRACE

XDS560v2 透過 MIPI HSPT 60 針腳接頭 (具有用於 TI 14 針腳、TI 20 針腳和 ARM 20 針腳的多轉接器) 連接到目標電路板,並透過 USB2.0 高速 (480Mbps) (...)

TI.com 無法提供
偵錯探測器

TMDSEMU560V2STM-UE — XDS560v2 System Trace USB 與乙太網路偵錯探測器

The XDS560v2 is the highest performance of the XDS560™ family of debug probes and supports both the traditional JTAG standard (IEEE1149.1) and cJTAG (IEEE1149.7). Note that it does not support serial wire debug (SWD).

All XDS debug probes support Core and System Trace in all ARM and DSP processors (...)

TI.com 無法提供
驅動程式或資料庫

MATHLIB — 用於浮點裝置的 DSP 數學函式庫

The Texas Instruments math library is an optimized floating-point math function library for C programmers using TI floating point devices. These routines are typically used in computationally intensive real-time applications where optimal execution speed is critical. By using these routines instead (...)
IDE、配置、編譯器或偵錯程式

CCSTUDIO Code Composer Studio™ integrated development environment (IDE)

Code Composer Studio is an integrated development environment (IDE) for TI's microcontrollers and processors. It comprises a suite of tools used to develop and debug embedded applications.  Code Composer Studio is available for download across Windows®, Linux® and macOS® desktops. It can also (...)

支援產品和硬體

支援產品和硬體

此設計資源支援此類別中多數產品。

檢查產品詳細資料頁面以確認支援。

啟動 下載選項
軟體轉碼器

C66XCODECSPCH C66x Speech Codecs - Software and Documentation

TI codecs are free, come with production licensing and are available for download now. All are production-tested for easy integration into video and voice applications. In many cases, the C64x+ codecs are provided and validated for C66x platforms. Datasheets and Release Notes are on the download (...)

支援產品和硬體

支援產品和硬體

產品
Arm 式處理器
OMAPL137-HT 高溫低功耗 C674x 浮點 DSP + Arm 處理器 - 高達 456 MHz OMAPL138B-EP 強化產品低功耗 C674x 浮點 DSP + Arm9 處理器 -345 MHz SMOMAPL138B-HIREL 高可靠性產品低功耗 C674x 浮點 DSP + Arm9 處理器 -375 MHz
數位訊號處理器 (DSP)
DM505 適用視覺分析 15mm 封裝的 SoC SM320C6678-HIREL 高可靠性產品高效能 8 核心 C6678 定點和浮點 DSP
下載選項
軟體轉碼器

C66XCODECSVID C6678 Video Codecs - Software and Documentation

TI codecs are free, come with production licensing and are available for download now. All are production-tested for easy integration into video and voice applications. In many cases, the C64x+ codecs are provided and validated for C66x platforms. Datasheets and Release Notes are on the download (...)

支援產品和硬體

支援產品和硬體

產品
Arm 式處理器
OMAPL137-HT 高溫低功耗 C674x 浮點 DSP + Arm 處理器 - 高達 456 MHz OMAPL138B-EP 強化產品低功耗 C674x 浮點 DSP + Arm9 處理器 -345 MHz SMOMAPL138B-HIREL 高可靠性產品低功耗 C674x 浮點 DSP + Arm9 處理器 -375 MHz
數位訊號處理器 (DSP)
DM505 適用視覺分析 15mm 封裝的 SoC SM320C6678-HIREL 高可靠性產品高效能 8 核心 C6678 定點和浮點 DSP
下載選項
封裝 針腳 CAD 符號、佔位空間與 3D 模型
NFBGA (GWT) 361 Ultra Librarian

訂購與品質

內含資訊:
  • RoHS
  • REACH
  • 產品標記
  • 鉛塗層/球物料
  • MSL 等級/回焊峰值
  • MTBF/FIT 估算值
  • 材料內容
  • 認證摘要
  • 進行中持續性的可靠性監測
內含資訊:
  • 晶圓廠位置
  • 組裝地點

建議產品可能具有與此 TI 產品相關的參數、評估模組或參考設計。

支援與培訓

內含 TI 工程師技術支援的 TI E2E™ 論壇

內容係由 TI 和社群貢獻者依「現狀」提供,且不構成 TI 規範。檢視使用條款

若有關於品質、封裝或訂購 TI 產品的問題,請參閱 TI 支援。​​​​​​​​​​​​​​

影片