SBAS661C February   2015  – May 2021 ADS1262 , ADS1263

PRODUCTION DATA  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Device Comparison
  6. Pin Configuration and Functions
  7. Specifications
    1. 7.1 Absolute Maximum Ratings
    2. 7.2 ESD Ratings
    3. 7.3 Recommended Operating Conditions
    4. 7.4 Thermal Information
    5. 7.5 Electrical Characteristics
    6. 7.6 Timing Requirements: Serial Interface
    7. 7.7 Switching Characteristics: Serial Interface
    8. 7.8 Timing Diagrams
    9. 7.9 Typical Characteristics
  8. Parameter Measurement Information
    1. 8.1 Offset Temperature Drift Measurement
    2. 8.2 Gain Temperature Drift Measurement
    3. 8.3 Common-Mode Rejection Ratio Measurement
    4. 8.4 Power-Supply Rejection Ratio Measurement
    5. 8.5 Crosstalk Measurement (ADS1263)
    6. 8.6 Reference-Voltage Temperature-Drift Measurement
    7. 8.7 Reference-Voltage Thermal-Hysteresis Measurement
    8. 8.8 Noise Performance
  9. Detailed Description
    1. 9.1 Overview
    2. 9.2 Functional Block Diagram
    3. 9.3 Feature Description
      1. 9.3.1  Multifunction Analog Inputs
      2. 9.3.2  Analog Input Description
        1. 9.3.2.1 ESD Diode
        2. 9.3.2.2 Input Multiplexer
      3. 9.3.3  Sensor Bias
      4. 9.3.4  Temperature Sensor
      5. 9.3.5  Power-Supply Monitor
      6. 9.3.6  PGA
      7. 9.3.7  PGA Voltage Overrange Monitors
        1. 9.3.7.1 PGA Differential Output Monitor
        2. 9.3.7.2 PGA Absolute Output-Voltage Monitor
      8. 9.3.8  ADC Reference Voltage
        1. 9.3.8.1 Internal Reference
        2. 9.3.8.2 External Reference
        3. 9.3.8.3 Power-Supply Reference
        4. 9.3.8.4 Low-Reference Monitor
      9. 9.3.9  ADC1 Modulator
      10. 9.3.10 Digital Filter
        1. 9.3.10.1 Sinc Filter Mode
          1. 9.3.10.1.1 Sinc Filter Frequency Response
        2. 9.3.10.2 FIR Filter
        3. 9.3.10.3 50-Hz and 60-Hz Line Cycle Rejection
      11. 9.3.11 Sensor-Excitation Current Sources (IDAC1 and IDAC2)
      12. 9.3.12 Level-Shift Voltage
      13. 9.3.13 General-Purpose Input/Output (GPIO)
      14. 9.3.14 Test DAC (TDAC)
      15. 9.3.15 ADC2 (ADS1263)
        1. 9.3.15.1 ADC2 Inputs
        2. 9.3.15.2 ADC2 PGA
        3. 9.3.15.3 ADC2 Reference
        4. 9.3.15.4 ADC2 Modulator
        5. 9.3.15.5 ADC2 Digital Filter
    4. 9.4 Device Functional Modes
      1. 9.4.1  Conversion Control
        1. 9.4.1.1 Continuous Conversion Mode
        2. 9.4.1.2 Pulse Conversion Mode
        3. 9.4.1.3 ADC2 Conversion Control (ADS1263)
      2. 9.4.2  Conversion Latency
      3. 9.4.3  Programmable Time Delay
      4. 9.4.4  Serial Interface
        1. 9.4.4.1 Chip Select (CS)
        2. 9.4.4.2 Serial Clock (SCLK)
        3. 9.4.4.3 Data Input (DIN)
        4. 9.4.4.4 Data Output/Data Ready (DOUT/DRDY)
        5. 9.4.4.5 Serial Interface Autoreset
      5. 9.4.5  Data Ready Pin (DRDY)
      6. 9.4.6  Conversion Data Software Polling
      7. 9.4.7  Read Conversion Data
        1. 9.4.7.1 Read Data Direct (ADC1 Only)
        2. 9.4.7.2 Read Data by Command
        3. 9.4.7.3 Data-Byte Sequence
          1. 9.4.7.3.1 Status Byte
          2. 9.4.7.3.2 Data Byte Format
          3. 9.4.7.3.3 Checksum Byte (CRC/CHK)
            1. 9.4.7.3.3.1 Checksum Mode (CRC[1:0] = 01h)
          4. 9.4.7.3.4 CRC Mode (CRC[1:0] = 10h)
      8. 9.4.8  ADC Clock Modes
        1. 9.4.8.1 Internal Oscillator
        2. 9.4.8.2 External Clock
        3. 9.4.8.3 Crystal Oscillator
      9. 9.4.9  Calibration
        1. 9.4.9.1 Offset and Full-Scale Calibration
          1. 9.4.9.1.1 Offset Calibration Registers
          2. 9.4.9.1.2 Full-Scale Calibration Registers
        2. 9.4.9.2 ADC1 Offset Self-Calibration (SFOCAL1)
        3. 9.4.9.3 ADC1 Offset System Calibration (SYOCAL1)
        4. 9.4.9.4 ADC2 Offset Self-Calibration ADC2 (SFOCAL2)
        5. 9.4.9.5 ADC2 Offset System Calibration ADC2 (SYOCAL2)
        6. 9.4.9.6 ADC1 Full-Scale System Calibration (SYGCAL1)
        7. 9.4.9.7 ADC2 Full-Scale System Calibration ADC2 (SYGCAL2)
        8. 9.4.9.8 Calibration Command Procedure
        9. 9.4.9.9 User Calibration Procedure
      10. 9.4.10 Reset
        1. 9.4.10.1 Power-On Reset (POR)
        2. 9.4.10.2 RESET/PWDN Pin
        3. 9.4.10.3 Reset by Command
      11. 9.4.11 Power-Down Mode
      12. 9.4.12 Chop Mode
    5. 9.5 Programming
      1. 9.5.1 NOP Command
      2. 9.5.2 RESET Command
      3. 9.5.3 START1, STOP1, START2, STOP2 Commands
      4. 9.5.4 RDATA1, RDATA2 Commands
      5. 9.5.5 SYOCAL1, SYGCAL1, SFOCAL1, SYOCAL2, SYGCAL2, SFOCAL2 Commands
      6. 9.5.6 RREG Command
      7. 9.5.7 WREG Command
    6. 9.6 Register Maps
      1. 9.6.1  Device Identification Register (address = 00h) [reset = x]
      2. 9.6.2  Power Register (address = 01h) [reset = 11h]
      3. 9.6.3  Interface Register (address = 02h) [reset = 05h]
      4. 9.6.4  Mode0 Register (address = 03h) [reset = 00h]
      5. 9.6.5  Mode1 Register (address = 04h) [reset = 80h]
      6. 9.6.6  Mode2 Register (address = 05h) [reset = 04h]
      7. 9.6.7  Input Multiplexer Register (address = 06h) [reset = 01h]
      8. 9.6.8  Offset Calibration Registers (address = 07h, 08h, 09h) [reset = 00h, 00h, 00h]
      9. 9.6.9  Full-Scale Calibration Registers (address = 0Ah, 0Bh, 0Ch) [reset = 40h, 00h, 00h]
      10. 9.6.10 IDACMUX Register (address = 0Dh) [reset = BBh]
      11. 9.6.11 IDACMAG Register (address = 0Eh) [reset = 00h]
      12. 9.6.12 REFMUX Register (address = 0Fh) [reset = 00h]
      13. 9.6.13 TDACP Control Register (address = 10h) [reset = 00h]
      14. 9.6.14 TDACN Control Register (address = 11h) [reset = 00h]
      15. 9.6.15 GPIO Connection Register (address = 12h) [reset = 00h]
      16. 9.6.16 GPIO Direction Register (address = 13h) [reset = 00h]
      17. 9.6.17 GPIO Data Register (address = 14h) [reset = 00h]
      18. 9.6.18 ADC2 Configuration Register (address = 15h) [reset = 00h]
      19. 9.6.19 ADC2 Input Multiplexer Register (address = 16h) [reset = 01h]
      20. 9.6.20 ADC2 Offset Calibration Registers (address = 17h, 18h) [reset = 00h, 00h]
      21. 9.6.21 ADC2 Full-Scale Calibration Registers (address = 19h, 1Ah) [reset = 00h, 40h]
  10. 10Application and Implementation
    1. 10.1 Application Information
      1. 10.1.1 Isolated (or Floated) Inputs
      2. 10.1.2 Single-Ended Measurements
      3. 10.1.3 Differential Measurements
      4. 10.1.4 Input Range
      5. 10.1.5 Input Filtering
        1. 10.1.5.1 Aliasing
      6. 10.1.6 Input Overload
      7. 10.1.7 Unused Inputs and Outputs
      8. 10.1.8 Voltage Reference
      9. 10.1.9 Serial Interface Connections
    2. 10.2 Typical Application
      1. 10.2.1 3-Wire RTD Measurement with Lead-Wire Compensation
        1. 10.2.1.1 Design Requirements
        2. 10.2.1.2 Detailed Design Procedure
        3. 10.2.1.3 Application Curve
    3. 10.3 What To Do and What Not To Do
    4. 10.4 Initialization Setup
  11. 11Power Supply Recommendations
    1. 11.1 Power-Supply Decoupling
    2. 11.2 Analog Power-Supply Clamp
    3. 11.3 Power-Supply Sequencing
  12. 12Layout
    1. 12.1 Layout Guidelines
    2. 12.2 Layout Example
  13. 13Device and Documentation Support
    1. 13.1 Receiving Notification of Documentation Updates
    2. 13.2 Support Resources
    3. 13.3 Trademarks
    4. 13.4 Electrostatic Discharge Caution
    5. 13.5 Glossary

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Aliasing

As with all ADCs, out-of-band input signals can fold back or alias if not band-limited. Aliasing describes the effect of input frequencies greater than ½ the sample rate folding back to the bandwidth of interest. An antialias filter placed at the ADC inputs reduces the magnitude of the aliased frequencies. The ADS1262 and ADS1263 incorporate analog and digital antialiasing filters to attenuate the aliased frequencies. There are two ranges of aliased frequencies: frequencies greater than ½ of the down-sampled output data rate (Nyquist frequency) and frequencies occurring at multiples of the modulator sample rate.

Aliasing can occur at frequencies greater than ½ the ADC output data rate. For example, at data rate of 50 SPS, aliasing occurs at frequencies greater than 25 Hz. The ADC digital filter rejects the aliased frequencies as input frequency increases. The amount of aliased frequency rejection is given by the filter type and order. Figure 10-7 illustrates the frequency response of the sinc filter. Note the sinc4 filter provides the best rejection of aliased frequencies.

GUID-96D1F428-F099-4A25-AB76-7ECD7ED155DC-low.gifFigure 10-7 Frequency Response (50 SPS)

The second band of aliased frequencies occur at the ADC modulator sample rate multiples (fMOD = fCLK / 8 = 921.6 kHz, multiples = 1843.2 kHz and so on). Figure 10-8 shows the 38400 SPS frequency response plotted to 1.2 MHz. The response near dc is the signal bandwidth of interest. Observe how the digital filter response repeats on the sides of the modulator sample rate (921.6 kHz). Figure 10-9 shows the repeated response at the modulator frequency multiples = N · fMOD ± fDR, where N = multiples of fMOD starting at 1, and fDR = data rate frequency. The digital filter attenuates signal or noise up to where the response repeats. However, signal or noise occurring at the modulator sample rate is not attenuated by the digital filter and therefore, is aliased to the passband.

GUID-4F83DD36-38C3-4468-AB3E-011BBCA72B41-low.gifFigure 10-8 Frequency Response to 1.2 MHz (38400 SPS)
GUID-D03D7BAD-09B5-4311-8C7B-89459B83647A-low.gifFigure 10-9 Frequency Response to 8 MHz
(38400 SPS)

Figure 10-10 illustrates how the frequencies alias near the modulator sample rate frequency. The final figure shows the aliased frequency rejection provided by an antialias filter. The ADC incorporates an analog antialias filter with a cutoff frequency of 60 kHz that rejects the aliased frequencies.

GUID-73DF6100-03CF-4899-8DF6-DB2B0D050CAB-low.gifFigure 10-10 Alias Effect

Many sensor signals are inherently band-limited; for example, the output of a thermocouple has a limited rate of change. In this case, the sensor signal does not alias back into the pass band when using a ΔΣ ADC. However, any noise picked up along the sensor wiring or the application circuitry can potentially alias into the pass band. Power line-cycle frequency and harmonics are one common noise source. External noise is also generated from electromagnetic interference (EMI) or radio frequency interference (RFI) sources, such as nearby motors and cellular phones. Another noise source exists on the printed circuit board (PCB) in the form of clocks and other digital signals. Analog input filtering helps remove unwanted signals from affecting the measurement result. The ADC incorporates a low-pass, antialias filter with a corner frequency of 60 kHz to reduce the aliased frequencies. The filter consists of the external 4.7-nF PGA output capacitor (CAPP and CAPN pins) and internal 280-Ω resistors.

Use an input filter to provide increased rejection of aliased noise frequencies and further attenuate possible strong high-frequency interference signals. For best performance, filter strong interference frequencies at the ADC inputs. Ideally, select a low-pass corner frequency that allows frequencies within the desired bandwidth and attenuates those frequencies outside the desired bandwidth. As a result of the stable and linear dielectric characteristics, use C0G-type MLCC capacitors in analog signal filters. In applications where high energy transients can be generated, such as caused by inductive load switching, transient voltage suppressor (TVS) diodes or external ESD diodes should be used to protect the ADC inputs.