SLASEU7 March   2023 AFE781H1 , AFE881H1

PRODUCTION DATA  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Pin Configuration and Functions
  6. Specifications
    1. 6.1  Absolute Maximum Ratings
    2. 6.2  ESD Ratings
    3. 6.3  Recommended Operating Conditions
    4. 6.4  Thermal Information
    5. 6.5  Electrical Characteristics
    6. 6.6  Timing Requirements
    7. 6.7  Timing Diagrams
    8. 6.8  Typical Characteristics: VOUT DAC
    9. 6.9  Typical Characteristics: ADC
    10. 6.10 Typical Characteristics: Reference
    11. 6.11 Typical Characteristics: HART Modem
    12. 6.12 Typical Characteristics: Power Supply
  7. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1 Digital-to-Analog Converter (DAC) Overview
        1. 7.3.1.1 DAC Resistor String
        2. 7.3.1.2 DAC Buffer Amplifier
        3. 7.3.1.3 DAC Transfer Function
        4. 7.3.1.4 DAC Gain and Offset Calibration
        5. 7.3.1.5 Programmable Slew Rate
        6. 7.3.1.6 DAC Register Structure and CLEAR State
      2. 7.3.2 Analog-to-Digital Converter (ADC) Overview
        1. 7.3.2.1 ADC Operation
        2. 7.3.2.2 ADC Custom Channel Sequencer
        3. 7.3.2.3 ADC Synchronization
        4. 7.3.2.4 ADC Offset Calibration
        5. 7.3.2.5 External Monitoring Inputs
        6. 7.3.2.6 Temperature Sensor
        7. 7.3.2.7 Self-Diagnostic Multiplexer
        8. 7.3.2.8 ADC Bypass
      3. 7.3.3 Programmable Out-of-Range Alarms
        1. 7.3.3.1 Alarm-Based Interrupts
        2. 7.3.3.2 Alarm Action Configuration Register
        3. 7.3.3.3 Alarm Voltage Generator
        4. 7.3.3.4 Temperature Sensor Alarm Function
        5. 7.3.3.5 Internal Reference Alarm Function
        6. 7.3.3.6 ADC Alarm Function
        7. 7.3.3.7 Fault Detection
      4. 7.3.4 IRQ
      5. 7.3.5 HART Interface
        1. 7.3.5.1  FIFO Buffers
          1. 7.3.5.1.1 FIFO Buffer Access
          2. 7.3.5.1.2 FIFO Buffer Flags
        2. 7.3.5.2  HART Modulator
        3. 7.3.5.3  HART Demodulator
        4. 7.3.5.4  HART Modem Modes
          1. 7.3.5.4.1 Half-Duplex Mode
          2. 7.3.5.4.2 Full-Duplex Mode
        5. 7.3.5.5  HART Modulation and Demodulation Arbitration
          1. 7.3.5.5.1 HART Receive Mode
          2. 7.3.5.5.2 HART Transmit Mode
        6. 7.3.5.6  HART Modulator Timing and Preamble Requirements
        7. 7.3.5.7  HART Demodulator Timing and Preamble Requirements
        8. 7.3.5.8  IRQ Configuration for HART Communication
        9. 7.3.5.9  HART Communication Using the SPI
        10. 7.3.5.10 HART Communication Using UART
        11. 7.3.5.11 Memory Built-In Self-Test (MBIST)
      6. 7.3.6 Internal Reference
      7. 7.3.7 Integrated Precision Oscillator
      8. 7.3.8 One-Time Programmable (OTP) Memory
    4. 7.4 Device Functional Modes
      1. 7.4.1 DAC Power-Down Mode
      2. 7.4.2 Reset
    5. 7.5 Programming
      1. 7.5.1 Communication Setup
        1. 7.5.1.1 SPI Mode
        2. 7.5.1.2 UART Mode
        3. 7.5.1.3 SPI Plus UART Mode
        4. 7.5.1.4 HART Functionality Setup Options
      2. 7.5.2 Serial Peripheral Interface (SPI)
        1. 7.5.2.1 SPI Frame Definition
        2. 7.5.2.2 SPI Read and Write
        3. 7.5.2.3 Frame Error Checking
        4. 7.5.2.4 Synchronization
      3. 7.5.3 UART Interface
        1. 7.5.3.1 UART Break Mode (UBM)
          1. 7.5.3.1.1 Interface With FIFO Buffers and Register Map
      4. 7.5.4 Status Bits
      5. 7.5.5 Watchdog Timer
    6. 7.6 Register Maps
      1. 7.6.1 AFEx81H1 Registers
  8. Application and Implementation
    1. 8.1 Application Information
      1. 8.1.1 Multichannel Configuration
    2. 8.2 Typical Application
      1. 8.2.1 4-mA to 20-mA Current Transmitter
        1. 8.2.1.1 Design Requirements
        2. 8.2.1.2 Detailed Design Procedure
          1. 8.2.1.2.1 Start-Up Circuit
          2. 8.2.1.2.2 Current Loop Control
          3. 8.2.1.2.3 Input Protection and Rectification
          4. 8.2.1.2.4 System Current Budget
        3. 8.2.1.3 Application Curves
    3. 8.3 Initialization Set Up
    4. 8.4 Power Supply Recommendations
    5. 8.5 Layout
      1. 8.5.1 Layout Guidelines
      2. 8.5.2 Layout Example
  9. Device and Documentation Support
    1. 9.1 Documentation Support
      1. 9.1.1 Related Documentation
    2. 9.2 Receiving Notification of Documentation Updates
    3. 9.3 Support Resources
    4. 9.4 Trademarks
    5. 9.5 Electrostatic Discharge Caution
    6. 9.6 Glossary
  10. 10Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information
HART Transmit Mode

To transmit the HART data, issue a request to send (RTS) either by toggling the RTS pin low or asserting MODEM_CFG.RTS, depending on the selected communication setup. When the HART bus is available for transmission and no carrier is detected, the device deasserts the CD pin, disables the demodulator, asserts the CTS response by setting MODEM_STATUS.CTS_ASSERT = 1, and begins modulating the carrier. If the CD pin is used, wait for the CD pin to be deasserted. Otherwise, unmask CTS_ASSERT and set up the appropriate IRQs for the FIFO_U2H levels and CTS flags to enable the system controller to receive an IRQ when CTS is asserted. See also Section 7.3.5.8. When the CD pin and IRQ are not used, poll the MODEM_STATUS register regularly to detect when the CTS response is asserted.

As long as the CD pin is asserted, the demodulator remains active and the RTS request is held pending by the arbiter. Any HART transmit data bytes received by the AFEx81H1 are enqueued into FIFO_U2H, but not transmitted immediately. The system controller must monitor the FIFO_U2H level to avoid buffer overflow in this condition.

When the CTS response is asserted, the data enqueued into FIFO_U2H are dequeued and transmitted onto the MOD_OUT pin. If no data are enqueued into FIFO_U2H, the modulator starts transmitting the mark signal. The beginning of the bit stream must meet the minimum bit times requirement to make sure there is enough time for successful detection of the mark-to-space transition on the receiving side; see also Section 7.3.5.6.

The system controller is then required to maintain adequate an FIFO_U2H buffer level to avoid gap errors and deassert the RTS at the end of bit stream with the correct timing delays; see also Section 7.3.5.6.