SNOSDG3 December   2024 LM74681

PRODUCTION DATA  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Pin Configuration and Functions
  6. Specifications
    1. 5.1 Absolute Maximum Ratings
    2. 5.2 ESD Ratings
    3. 5.3 Recommended Operating Conditions
    4. 5.4 Thermal Information
    5. 5.5 Electrical Characteristics
    6. 5.6 Switching Characteristics
    7. 5.7 Typical Characteristics
  7. Parameter Measurement Information
  8. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1 Input and Output Voltage
      2. 7.3.2 Charge Pump
      3. 7.3.3 Gate Driver
      4. 7.3.4 Enable
    4. 7.4 Device Functional Modes
      1. 7.4.1 Conduction Mode
        1. 7.4.1.1 Regulated Conduction Mode
        2. 7.4.1.2 Full Conduction Mode
      2. 7.4.2 Reverse Current Protection Mode
  9. Application and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Application
      1. 8.2.1 Design Requirements
      2. 8.2.2 Detailed Design Procedure
        1. 8.2.2.1 Design Considerations
        2. 8.2.2.2 MOSFET Selection
        3. 8.2.2.3 Output capacitance
      3. 8.2.3 Application Curves
    3. 8.3 Powered Device for IEEE 802.3bt Class 5-8 (45W-90W) Systems
    4. 8.4 Power Supply Recommendations
      1. 8.4.1 Transient Protection
    5. 8.5 Layout
      1. 8.5.1 Layout Guidelines
      2. 8.5.2 Layout Example
  10. Device and Documentation Support
    1. 9.1 Receiving Notification of Documentation Updates
    2. 9.2 Support Resources
    3. 9.3 Trademarks
    4. 9.4 Electrostatic Discharge Caution
    5. 9.5 Glossary
  11. 10Revision History
  12. 11Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Full Conduction Mode

For the LM74681 to operate its top gates TG1 and TG2 in full conduction mode the gate driver must be enabled as described in Section 7.3.3 and the current from source to drain of the external MOSFET must be large enough to result in an INx to OUTP voltage drop of greater than VTG_FC. If these conditions are achieved the GATE pin is internally connected to the charge pump resulting in the INx to OUTP voltage being equal to VTGx – VINx. By connecting the internal charge pump to GATE the external MOSFET RDS(ON) is minimized reducing the power loss of the external MOSFET when forward currents are large.