SNOSB28G August   2010  – November 2014 LMP8640 , LMP8640-Q1 , LMP8640HV

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Device Comparison Table
  6. Pin Configuration and Functions
  7. Specifications
    1. 7.1 Absolute Maximum Ratings
    2. 7.2 Handling Ratings - LMP8640, LMP8640HV
    3. 7.3 Handling Ratings - LMP8640-Q1
    4. 7.4 Recommended Operating Conditions
    5. 7.5 Thermal Information
    6. 7.6 Electrical Characteristics 2.7 V
    7. 7.7 Electrical Characteristics 5 V
    8. 7.8 Electrical Characteristics 12 V
    9. 7.9 Typical Characteristics
  8. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
      1. 8.3.1 Selection of Sense Resistor
        1. 8.3.1.1 Resistor Power Rating and Thermal Issues
        2. 8.3.1.2 Using PCB Trace as a Sense Resistor
      2. 8.3.2 Sense Line Inputs
      3. 8.3.3 Effects of Series Resistance on Sense Lines
    4. 8.4 Device Functional Modes
      1. 8.4.1 Bias Current at Low Common Mode Voltage
      2. 8.4.2 Applying Input Voltage with No Supply Voltage
      3. 8.4.3 Driving an ADC
  9. Application and Implementation
    1. 9.1 Application Information
    2. 9.2 Typical Application
      1. 9.2.1 Design Requirements
      2. 9.2.2 Design Procedure
        1. 9.2.2.1 First Step - LMP8640 or LMP8640HV Selection
        2. 9.2.2.2 Second Step - Gain Option Selection
        3. 9.2.2.3 Third Step - Shunt Resistor Selection
      3. 9.2.3 Application Performance Plot
    3. 9.3 Do's and Don'ts Added Section
  10. 10Power Supply Recommendations
  11. 11Layout
    1. 11.1 Layout Guidelines
    2. 11.2 Layout Example
  12. 12Device and Documentation Support
    1. 12.1 Device Support
      1. 12.1.1 Development Support
    2. 12.2 Documentation Support
      1. 12.2.1 Related Documentation
    3. 12.3 Related Links
    4. 12.4 Trademarks
    5. 12.5 Electrostatic Discharge Caution
    6. 12.6 Glossary
  13. 13Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

7 Specifications

7.1 Absolute Maximum Ratings(1)(2)(3)

LMP8640 limits also apply to the LMP8640-Q1.
MIN MAX UNIT
Supply Voltage (VS = V+ - V) -0.3 13.2 V
Differential Voltage +IN- (-IN) -6 6 V
Voltage at pins +IN, -IN LMP8640HV -6 80 V
LMP8640, LMP8640-Q1 -6 60 V
Voltage at VOUT pin V- V+ V
Junction Temperature (4) -40 150 °C
(1) “Absolute Maximum Ratings” indicate limits beyond which damage to the device may occur, including inoperability and degradation of device reliability and/or performance. Functional operation of the device and/or non-degradation at the Absolute Maximum Ratings or other conditions beyond those indicated in the Operating Ratings is not implied. Operating Ratings indicate conditions at which the device is functional and the device should not be operated beyond such conditions.
(2) For soldering specifications,see product folder at www.ti.com and http://www.ti.com/lit/SNOA549.
(3) If Military/Aerospace specified devices are required, please contact the Texas Instruments Sales Office/Distributors for availability and specifications.
(4) The maximum power dissipation must be derated at elevated temperatures and is dictated by TJ(MAX), θJA, and the ambient temperature, TA. The maximum allowable power dissipation PDMAX = (TJ(MAX) - TA)/ θJA or the number given in Absolute Maximum Ratings, whichever is lower.

7.2 Handling Ratings - LMP8640, LMP8640HV

MIN MAX UNIT
Tstg Storage temperature range -65 150 °C
V(ESD) Electrostatic discharge Human body model (HBM(1)) For input pins +IN, -IN -5000 5000 V
For all other pins -2000 2000
Charged device model (CDM)(2) All pins -1250 1250
Machine model (MM) (3) -200 200
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.
(3) Machine Model, applicable std. JESD22-A115-A (ESD MM std. of JEDEC)

7.3 Handling Ratings - LMP8640-Q1

MIN MAX UNIT
Tstg Storage temperature range -65 150 °C
V(ESD) Electrostatic discharge Human body model (HBM), per AEC Q100-002(1) -2000 2000 V
Charged device model (CDM), per AEC Q100-011 All pins -1000 1000
Machine model (MM) (2) All pins -200 200
(1) AEC Q100-002 indicates HBM stressing is done in accordance with the ANSI/ESDA/JEDEC JS-001 specification.
(2) Machine Model, applicable std. JESD22-A115-A (ESD MM std. of JEDEC)

7.4 Recommended Operating Conditions(1)

MIN MAX UNIT
Supply Voltage (VS = V+ - V) 2.7 12 V
Operating Junction Temperature Range (4) -40 125 °C

7.5 Thermal Information

THERMAL METRIC(1) LMP8640
LMP8640HV
LMP8640-Q1
UNIT
THIN SOT-23
6 PINS
RθJA Junction-to-ambient thermal resistance (4) 165 °C/W
RθJC(top) Junction-to-case (top) thermal resistance 28
RθJB Junction-to-board thermal resistance 24.6
ψJT Junction-to-top characterization parameter 0.3
ψJB Junction-to-board characterization parameter 23.8
(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.

7.6 Electrical Characteristics 2.7 V (1)

Unless otherwise specified, all limits ensured for at TA = 25°C, VS= V+ – V-, VSENSE= +IN-(-IN), V+ = 2.7 V, V = 0 V, −2 V < VCM < 76 V, RL = 10 MΩ. LMP8640 limits also apply to the LMP8640-Q1.
PARAMETER TEST CONDITIONS MIN(3) TYP(2) MAX(3) UNIT
VOS Input Offset Voltage VCM = 2.1 V -900 900 µV
VCM = 2.1 V, Over Temperature -1160 1160
TCVOS Input Offset Voltage Drift(4)(6) VCM = 2.1 V 2.6 µV/°C
IB Input Bias Current (7) VCM = 2.1 V, VSENSE = 0 V 12 20 µA
VCM = 2.1 V, Over Temperature, VSENSE = 0 V 27
eni Input Voltage Noise (6) f > 10 kHz 117 nV/√Hz
Gain AV Gain LMP8640-T LMP8640HV-T 20 V/V
Gain LMP8640-F LMP8640HV-F 50
Gain LMP8640-H LMP8640HV-H 100
Gain error VCM = 2.1 V -0.25% 0.25%
VCM = 2.1 V, Over Temperature -0.51% 0.51%
Accuracy over temperature(6) VCM = 2.1V, Over Temperature 26.2 ppm/°C
PSRR Power Supply Rejection Ratio VCM = 2.1 V, 2.7 V < V+ < 12 V, 85 dB
CMRR Common Mode Rejection Ratio LMP8640HV 2.1 V < VCM < 42 V
LMP8640 2.1 V < VCM< 42 V
103 dB
LMP8640HV 2.1 V < VCM < 76 V 95
-2 V <VCM < 2 V, 60
BW Fixed Gain LMP8640-T LMP8640HV-T (6) DC VSENSE = 67.5 mV,
CL = 30 pF,RL= 1MΩ
950 kHz
Fixed Gain LMP8640-F LMP8640HV-F (6) DC VSENSE =27 mV,
CL = 30 pF, RL= 1MΩ
450
Fixed Gain LMP8640-H LMP8640HV-H (6) DC VSENSE = 13.5 mV,
CL = 30 pF ,RL= 1 MΩ
230
SR Slew Rate (5)(6) VCM =5 V, CL = 30 pF, RL = 1 MΩ,
LMP8640-T LMP8640HV-T VSENSE =100 mVpp,
LMP8640-F LMP8640HV-F VSENSE =40 mVpp,
LMP8640-H LMP8640HV-H VSENSE =20 mVpp,
1.4 V/µs
RIN Differential Mode Input Impedance(6) 5
IS Supply Current VCM = 2.1 V 420 600 µA
VCM = 2.1 V, Over Temperature 800
VCM = −2 V 2000 2500
VCM = −2 V, Over Temperature 2750
VOUT Maximum Output Voltage VCM = 2.1 V 2.65 V
Minimum Output Voltage LMP8640-T LMP8640HV-T
VCM = 2.1 V
18.2 mV
LMP8640-F LMP8640HV-F
VCM = 2.1 V
40
LMP8640-H LMP8640HV-H
VCM = 2.1 V
80
CLOAD Max Output Capacitance Load(6) 30 pF
(1) Electrical Table values apply only for factory testing conditions at the temperature indicated. Factory testing conditions result in very limited self-heating of the device such that TJ = TA. No specification of parametric performance is indicated in the electrical tables under conditions of internal self-heating where TJ > TA. Absolute Maximum Ratings indicate junction temperature limits beyond which the device may be permanently degraded, either mechanically or electrically.
(2) Typical values represent the most likely parametric norm at the time of characterization. Actual typical values may vary over time and will also depend on the application and configuration. The typical values are not tested and are not ensured on shipped production material.
(3) Limits are 100% production tested at 25°C. Limits over the operating temperature range are ensured through correlations using statistical quality control (SQC) method.
(4) Offset voltage temperature drift is determined by dividing the change in VOS at the temperature extremes by the total temperature change.
(5) The number specified is the average of rising and falling slew rates and measured at 90% to 10%.
(6) This parameter is ensured by design and/or characterization and is not tested in production.
(7) Positive Bias Current corresponds to current flowing into the device. Spec does not include input signal dependent currents on the positive input of approximately Vsense / 5KΩ due to topology feedback action.

7.7 Electrical Characteristics 5 V (1)

Unless otherwise specified, all limits ensured for at TA = 25°C, VS= V+ – V-, VSENSE= +IN-(-IN), V+ = 5 V, V = 0 V, −2 V < VCM < 76 V, RL = 10 MΩ. LMP8640 electrical limits also apply to the LMP8640-Q1 unless noted.
PARAMETER TEST CONDITIONS MIN(3) TYP(2) MAX(3) UNIT
VOS Input Offset Voltage VCM = 2.1 V -900 900 µV
VCM = 2.1 V, Over Temperature -1160 1160
TCVOS Input Offset Voltage Drift(4)(6) VCM = 2.1 V 2.6 µV/°C
IB Input Bias Current (7) VCM = 2.1 V, VSENSE = 0 V 13 21 µA
VCM = 2.1 V, Over Temperature,VSENSE = 0 V 28
eni Input Voltage Noise (6) f > 10 kHz 117 nV/√Hz
Gain AV Gain LMP8640-T LMP8640HV-T 20 V/V
Gain LMP8640-F LMP8640HV-F 50
Gain LMP8640-H LMP8640HV-H 100
Gain error VCM = 2.1 V -0.25% 0.25%
VCM = 2.1 V, Over Temperature -0.51% 0.51%
Accuracy over temperature(6) −40°C to 125°C, VCM=2.1 V 26.2 ppm/°C
PSRR Power Supply Rejection Ratio VCM = 2.1 V, 2.7V < V+ < 12 V, 85 dB
CMRR Common Mode Rejection Ratio LMP8640HV 2.1 V < VCM < 42 V
LMP8640 2.1 V < VCM< 42 V
103 dB
LMP8640HV 2.1 V < VCM < 76 V 95
-2 V <VCM < 2 V, 60
BW Fixed Gain LMP8640-T LMP8640HV-T (6) DC VSENSE = 67.5 mV,
CL = 30 pF ,RL= 1 MΩ
950 kHz
Fixed Gain LMP8640-F LMP8640HV-F(6) DC VSENSE =27 mV,
CL = 30 pF ,RL= 1 MΩ
450
Fixed Gain LMP8640-H LMP8640HV-H(6) DC VSENSE = 13.5 mV,
CL = 30 pF ,RL= 1MΩ
230
SR Slew Rate (5)(6) VCM =5 V, CL = 30 pF, RL = 1MΩ,
LMP8640-T LMP8640HV-T VSENSE = 200 mVpp,
LMP8640-F LMP8640HV-F VSENSE = 80 mVpp,
LMP8640-H LMP8640HV-H VSENSE = 40 mVpp,
1.6 V/µs
RIN Differential Mode Input Impedance(6) 5
IS Supply Current VCM = 2.1 V 500 722 µA
VCM = 2.1 V, Over Temperature 922
VCM = −2 V 2050 2500
VCM = −2 V, Over Temperature 2750
VOUT Maximum Output Voltage VCM = 2.1 V 4.95 V
Minimum Output Voltage LMP8640-T LMP8640HV-T
VCM = 2.1 V
18.2 mV
LMP8640-F LMP8640HV-F
VCM = 2.1 V
40
LMP8640-H LMP8640HV-H
VCM = 2.1 V
80
CLOAD Max Output Capacitance Load(6) 30 pF

7.8 Electrical Characteristics 12 V (1)

Unless otherwise specified, all limits ensured for at TA = 25°C, VS= V+ – V-, VSENSE= +IN-(-IN), V+ = 12 V, V = 0V, −2 V < VCM < 76 V, RL = 10 MΩ. LMP8640 electrical limits also apply to the LMP8640-Q1 unless noted.
PARAMETER TEST CONDITIONS MIN(3) TYP(2) MAX(3) UNIT
VOS Input Offset Voltage VCM = 2.1 V -900 900 µV
VCM = 2.1 V, Over Temperature -1160 1160
TCVOS Input Offset Voltage Drift(4)(6) VCM = 2.1 V 2.6 µV/°C
IB Input Bias Current (7) VCM = 2.1 V, VSENSE = 0 V 13 22 µA
VCM = 2.1 V, Over Temperature, VSENSE = 0 V 28
eni Input Voltage Noise (6) f > 10 kHz 117 nV/√Hz
Gain AV Gain LMP8640-T LMP8640HV-T 20 V/V
Gain LMP8640-F LMP8640HV-F 50
Gain LMP8640-H LMP8640HV-H 100
Gain error VCM = 2.1 V -0.25% 0.25%
VCM = 2.1 V, Over Temperature -0.51% 0.51%
Accuracy over temperature(6) −40°C to 125°C, VCM= 2.1 V 26.2 ppm/°C
PSRR Power Supply Rejection Ratio VCM = 2.1 V, 2.7 V < V+ < 12 V, 85 dB
CMRR Common Mode Rejection Ratio LMP8640HV 2.1 V < VCM < 42 V
LMP8640 2.1 V < VCM< 42 V
103 dB
LMP8640HV 2.1 V < VCM < 76 V 95
-2 V < VCM < 2 V, 60
BW Fixed Gain LMP8640-T LMP8640HV-T (6) DC VSENSE = 67.5 mV,
CL = 30 pF, RL= 1 MΩ
950 kHz
Fixed Gain LMP8640-F LMP8640HV-F (6) DC VSENSE =27 mV,
CL = 30 pF, RL= 1 MΩ
450
Fixed Gain LMP8640-H LMP8640HV-H (6) DC VSENSE = 13.5 mV,
CL = 30 pF, RL= 1 MΩ
230
SR Slew Rate (5)(6) VCM =5 V, CL = 30 pF, RL = 1 MΩ,
LMP8640-T LMP8640HV-T VSENSE = 500 mVpp,
LMP8640-F LMP8640HV-F VSENSE =200 mVpp,
LMP8640-H LMP8640HV-H VSENSE =100 mVpp,
1.8 V/µs
RIN Differential Mode Input Impedance(6) 5
IS Supply Current VCM = 2.1 V 720 1050 µA
VCM = 2.1 V, Over Temperature 1250
VCM = −2 V 2300 2800
VCM = −2 V, Over Temperature 3000
VOUT Maximum Output Voltage VCM = 2.1 V 11.85 V
Minimum Output Voltage LMP8640-T LMP8640HV-T
VCM = 2.1 V
18.2 mV
LMP8640-F LMP8640HV-F
VCM = 2.1 V
40
LMP8640-H LMP8640HV-H
VCM = 2.1 V
80
CLOAD Max Output Capacitance Load(6) 30 pF

7.9 Typical Characteristics

Unless otherwise specified: TA = 25°C, VS=V+-V-, VSENSE= +IN - (-IN), RL = 10 MΩ.
30071425.gif
Figure 1. Supply Curent vs. Supply Voltage
30071427.gif
Figure 3. Supply Current vs. VCM
30071422.gif
Figure 5. CMRR vs. VCM (Gain 20 V/V)
30071424.gif
Figure 7. CMRR vs. VCM (Gain 100 V/V)
30071438.gif
Figure 9. Ibias vs. VCM
30071440.gif
Figure 11. Ibias vs. VCM
30071416.gif
Figure 13. Output voltage vs. VSENSE
30071418.gif
Figure 15. Large Step Response
30071420.gif
Figure 17. Settling Time (Fall)
30071411.gif
Figure 19. Common Mode Step Response (Rise)
30071432.gif
Figure 21. Load Regulation (Sinking)
30071412.gif
Figure 23. AC PSRR vs. Frequency
30071426.gif
Figure 2. Supply Current vs. VCM
30071428.gif
Figure 4. Supply Current vs. VCM
30071423.gif
Figure 6. CMRR vs. VCM (Gain 50 V/V)
30071437.gif
Figure 8. Input Voltage Offset vs. VCM
30071439.gif
Figure 10. Ibias vs. VCM
30071414.gif
Figure 12. Gain vs. Frequency
30071417.gif
Figure 14. Output Voltage vs. VSENSE (ZOOM Close to 0 V)
30071419.gif
Figure 16. Small Step Response
30071421.gif
Figure 18. Settling Time (Rise)
30071410.gif
Figure 20. Common Mode Step Response (Fall)
30071431.gif
Figure 22. Load Regulation (Sourcing)
30071413.gif
Figure 24. AC CMRR vs. Frequency