SLLSFF2B February 2022 – October 2024 TCAN1462-Q1
PRODUCTION DATA
PARAMETER | TEST CONDITIONS | MIN | TYP | MAX | UNIT | ||
---|---|---|---|---|---|---|---|
Driver Electrical Characteristics | |||||||
VO(DOM) | Dominant output voltage normal mode | CANH | TXD = 0 V, STB = 0 V 50 Ω ≤ RL ≤ 65 Ω, CL = open, See Figure 7-2 and Figure 8-5 |
2.75 | 4.5 | V | |
CANL | 0.5 | 2.25 | V | ||||
VO(REC) | Recessive output voltage normal mode | CANH and CANL | TXD = VIO, STB = 0 V RL = open (no load), CL = open, See Figure 7-2 and Figure 8-5 |
2 | 0.5 VCC | 3 | V |
VSYM | Driver symmetry (VO(CANH) + VO(CANL))/VCC |
TXD = 250 kHz, 1 MHz, 2.5 MHz, STB = 0 V RL = 60, CSPLIT = 4.7 nF, CL = open, See Figure 7-2 and Figure 9-2 |
0.9 | 1.1 | V/V | ||
VSYM_DC | DC output symmetry (VCC - VO(CANH) - VO(CANL)) |
STB = 0 V RL = 60 Ω, CL = open, See Figure 7-2 and Figure 8-5 |
–400 | 400 | mV | ||
RID(DOM) | Differential input resistance in dominant phase | TXD= 0 V, STB = 0 V, See Figure 8-2 | 40 | Ω | |||
RID(ACTIVE_REC) | Differential input resistance in active recessive drive phase | Duration from TXD low-to-high edge to elapse of active recessive drive period (tSIC_TX_base), See Figure 8-2 | 100 | Ω | |||
VOD(DOM) | Differential output voltage normal mode Dominant |
CANH - CANL | TXD = 0 V, STB = 0 V 50 Ω ≤ RL ≤ 65 Ω, CL = open, See Figure 7-2 and Figure 8-5 |
1.5 | 3 | V | |
TXD = 0 V, STB = 0 V 45 Ω ≤ RL ≤ 70 Ω, CL = open, See Figure 7-2 and Figure 8-5 |
1.4 | 3.3 | V | ||||
TXD = 0 V, STB = 0 V RL = 2240 Ω, CL = open, See Figure 7-2 and Figure 8-5 |
1.5 | 5 | V | ||||
VOD(REC) | Differential output voltage normal mode Recessive |
CANH - CANL | TXD = VIO, STB = 0 V RL = 60 Ω, CL = open, See Figure 7-2 and Figure 8-5 |
–120 | 12 | mV | |
TXD = VIO, STB = 0 V RL = open, CL = open, See Figure 7-2 and Figure 8-5 |
–50 | 50 | mV | ||||
VO(STB) | Bus output voltage standby mode | CANH | TXD = STB = VIO RL = open , CL = open, See Figure 7-2 and Figure 8-5 |
-0.1 | 0.1 | V | |
CANL | -0.1 | 0.1 | V | ||||
CANH - CANL | -0.2 | 0.2 | V | ||||
IOS | Short-circuit bus output current, TXD is dominant or recessive or toggling, normal mode | V(CANH) = -15 V to 40 V, CANL = open, TXD = 0 V or VIO or 250 kHz, 2.5 MHz square wave, See Figure 7-7 and Figure 8-5 |
–115 | 115 | mA | ||
V(CAN_L) = -15 V to 40 V, CANH = open, TXD = 0 V or VIO or 250 kHz, 2.5 MHz square wave, See Figure 7-7 and Figure 8-5 |
–115 | 115 | mA | ||||
Receiver Electrical Characteristics | |||||||
VIT | Input threshold voltage normal mode | -12 V ≤ VCM ≤ 12 V, STB= 0 V, See Figure 7-3 and Table 8-6 |
500 | 900 | mV | ||
VIT(STB) | Input threshold standby mode | -12 V ≤ VCM ≤ 12 V, STB= VIO , See Figure 7-3 and Table 8-6 |
400 | 1150 | mV | ||
VDOM | Normal mode dominant state differential input voltage range | -12 V ≤ VCM ≤ 12 V, STB= 0 V, See Figure 7-3 and Table 8-6 |
0.9 | 9 | V | ||
VREC | Normal mode recessive state differential input voltage range | -12 V ≤ VCM ≤ 12 V , STB= 0 V, See Figure 7-3 and Table 8-6 |
-4 | 0.5 | V | ||
VDOM(STB) | Standby mode dominant state differential input voltage range | STB = VIO, -12 V ≤ VCM ≤ 12 V, See Figure 7-3 and Table 8-6 |
1.15 | 9 | V | ||
VREC(STB) | Standby mode recessive state differential input voltage range | STB = VIO, -12 V ≤ VCM ≤ 12 V, See Figure 7-3 and Table 8-6 |
-4 | 0.4 | V | ||
VHYS | Hysteresis voltage for input threshold normal mode | -12 V ≤ VCM ≤ 12 V, STB= 0 V, See Figure 7-3 and Table 8-6 |
100 | mV | |||
VCM | Common mode range normal and standby modes | See Figure 7-3 and Table 8-6 | –12 | 12 | V | ||
ILKG(IOFF) | Unpowered bus input leakage current | CANH = CANL = 5 V, VCC = VIO = GND | 5 | µA | |||
CI | Input capacitance to ground (CANH or CANL) | TXD = VIO | 40 | pF | |||
CID | Differential input capacitance | 20 | pF | ||||
RID | Differential input resistance | TXD = VIO, STB = 0 V -12 V ≤ VCM ≤ 12 V, Delta V/Delta I | 40 | 90 | kΩ | ||
RIN | Single ended input resistance (CANH or CANL) |
20 | 45 | kΩ | |||
RIN(M) | Input resistance matching [1 – (RIN(CANH) / RIN(CANL))] × 100 % |
V(CAN_H) = V(CAN_L) = 5 V | –1 | 1 | % | ||
TXD Terminal (CAN Transmit Data Input) | |||||||
VIH | High-level input voltage | Devices without VIO | 0.7 VCC | V | |||
VIH | High-level input voltage | Devices with VIO | 0.7 VIO | V | |||
VIL | Low-level input voltage | Devices without VIO | 0.3 VCC | V | |||
VIL | Low-level input voltage | Devices with VIO | 0.3 VIO | V | |||
IIH | High-level input leakage current | TXD = VCC = VIO = 5.5 V | –2.5 | 0 | 1 | µA | |
IIL | Low-level input leakage current | TXD = 0 V, VCC = VIO = 5.5 V | –200 | -100 | –20 | µA | |
ILKG(OFF) | Unpowered leakage current | TXD = 5.5 V, VCC = VIO = 0 V | –1 | 0 | 1 | µA | |
CI | Input capacitance | VIN = 0.4×sin(2×π×2×106×t)+2.5 V | 5 | pF | |||
RXD Terminal (CAN Receive Data Output) | |||||||
VOH | High-level output voltage | Devices without VIO IO = –1.5 mA, See Figure 7-3 |
0.8 VCC | V | |||
VOH | High-level output voltage | IO = –1.5 mA, Devices with VIO See Figure 7-3 |
0.8 VIO | V | |||
VOL | Low-level output voltage | Devices without VIO IO = 1.5 mA, See Figure 7-3 |
0.2 VCC | V | |||
VOL | Low-level output voltage | Devices with VIO IO = 1.5 mA, Devices with VIO See Figure 7-3 |
0.2 VIO | V | |||
ILKG(OFF) | Unpowered leakage current | RXD = 5.5 V, VCC = VIO = 0 V | –1 | 0 | 1 | µA | |
STB Terminal (Standby Mode Input) | |||||||
VIH | High-level input voltage | Devices without VIO | 0.7 VCC | V | |||
VIH | High-level input voltage | Devices with VIO | 0.7 VIO | V | |||
VIL | Low-level input voltage | Devices without VIO | 0.3 VCC | V | |||
VIL | Low-level input voltage | Devices with VIO | 0.3 VIO | V | |||
IIH | High-level input leakage current | VCC = VIO = STB = 5.5 V | –2 | 2 | µA | ||
IIL | Low-level input leakage current | VCC = VIO = 5.5 V, STB = 0 V | –20 | –2 | µA | ||
ILKG(OFF) | Unpowered leakage current | STB = 5.5V, VCC= VIO = 0 V | –1 | 0 | 1 | µA |