JAJSVE4 September   2024 DDS39RF10 , DDS39RFS10

PRODUCTION DATA  

  1.   1
  2. 特長
  3. アプリケーション
  4. 概要
  5. Device Comparison
  6. Pin Configuration and Functions
  7. Specifications
    1. 6.1  Absolute Maximum Ratings
    2. 6.2  ESD Ratings
    3. 6.3  Recommended Operating Conditions
    4. 6.4  Thermal Information
    5. 6.5  Electrical Characteristics - DC Specifications
    6. 6.6  Electrical Characteristics - AC Specifications
    7. 6.7  Electrical Characteristics - Power Consumption
    8. 6.8  Timing Requirements
    9. 6.9  Switching Characteristics
    10. 6.10 SPI and FRI Timing Diagrams
    11. 6.11 Typical Characteristics: Single Tone Spectra
    12. 6.12 Typical Characteristics: Dual Tone Spectra
    13. 6.13 Typical Characteristics: Power Dissipation and Supply Currents
  8. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagrams
    3. 7.3 Feature Description
      1. 7.3.1 DAC Output Modes
        1. 7.3.1.1 NRZ Mode
        2. 7.3.1.2 RTZ Mode
        3. 7.3.1.3 RF Mode
        4. 7.3.1.4 DES Mode
      2. 7.3.2 DAC Core
        1. 7.3.2.1 DAC Output Structure
        2. 7.3.2.2 Full-Scale Current Adjustment
      3. 7.3.3 DEM and Dither
      4. 7.3.4 Offset Adjustment
      5. 7.3.5 Clocking Subsystem
        1. 7.3.5.1 SYSREF Frequency Requirements
        2. 7.3.5.2 SYSREF Position Detector and Sampling Position Selection (SYSREF Windowing)
      6. 7.3.6 Digital Signal Processing Blocks
        1. 7.3.6.1 Digital Upconverter (DUC)
          1. 7.3.6.1.1 Interpolation Filters
          2. 7.3.6.1.2 Numerically Controlled Oscillator (NCO)
            1. 7.3.6.1.2.1 Phase-Continuous NCO Update Mode
            2. 7.3.6.1.2.2 Phase-coherent NCO Update Mode
            3. 7.3.6.1.2.3 Phase-sync NCO Update Mode
            4. 7.3.6.1.2.4 NCO Synchronization
              1. 7.3.6.1.2.4.1 JESD204C LSB Synchonization
            5. 7.3.6.1.2.5 NCO Mode Programming
          3. 7.3.6.1.3 Mixer Scaling
        2. 7.3.6.2 Channel Bonder
        3. 7.3.6.3 DES Interpolator
      7. 7.3.7 JESD204C Interface
        1. 7.3.7.1  Deviation from JESD204C Standard
        2. 7.3.7.2  Transport Layer
        3. 7.3.7.3  Scrambler and Descrambler
        4. 7.3.7.4  Link Layer
        5. 7.3.7.5  Physical Layer
        6. 7.3.7.6  Serdes PLL Control
        7. 7.3.7.7  Serdes Crossbar
        8. 7.3.7.8  Multi-Device Synchronization and Deterministic Latency
          1. 7.3.7.8.1 Programming RBD
        9. 7.3.7.9  Operation in Subclass 0 Systems
        10. 7.3.7.10 Link Reset
      8. 7.3.8 Alarm Generation
    4. 7.4 Device Functional Modes
      1. 7.4.1 DUC and DDS Modes
      2. 7.4.2 JESD204C Interface Modes
        1. 7.4.2.1 JESD204C Interface Modes
        2. 7.4.2.2 JESD204C Format Diagrams
          1. 7.4.2.2.1 16-bit Formats
      3. 7.4.3 NCO Synchronization Latency
      4. 7.4.4 Data Path Latency
    5. 7.5 Programming
      1. 7.5.1 Using the Standard SPI Interface
        1. 7.5.1.1 SCS
        2. 7.5.1.2 SCLK
        3. 7.5.1.3 SDI
        4. 7.5.1.4 SDO
        5. 7.5.1.5 Serial Interface Protocol
        6. 7.5.1.6 Streaming Mode
      2. 7.5.2 Using the Fast Reconfiguration Interface
      3. 7.5.3 SPI Register Map
  9. Application and Implementation
    1. 8.1 Application Information
      1. 8.1.1 Startup Procedure for DUC/Bypass Mode
      2. 8.1.2 Startup Procedure for DDS Mode
      3. 8.1.3 Understanding Dual Edge Sampling Modes
      4. 8.1.4 Eye Scan Procedure
      5. 8.1.5 Pre/Post Cursor Analysis Procedure
      6. 8.1.6 Sleep and Disable Modes
    2. 8.2 Typical Application
      1. 8.2.1 S-Band Radar Transmitter
      2. 8.2.2 Design Requirements
      3. 8.2.3 Detailed Design Procedure
      4. 8.2.4 Detailed Clocking Subsystem Design Procedure
        1. 8.2.4.1 Example 1: SWAP-C Optimized
        2. 8.2.4.2 Example 2: Improved Phase Noise LMX2820 with External VCO
        3. 8.2.4.3 Example 3: Discrete Analog PLL for Best DAC Performance
        4. 8.2.4.4 10GHz Clock Generation
      5. 8.2.5 Application Curves
    3. 8.3 Power Supply Recommendations
      1. 8.3.1 Power Up and Down Sequence
    4. 8.4 Layout
      1. 8.4.1 Layout Guidelines and Example
  10. Device and Documentation Support
    1. 9.1 ドキュメントの更新通知を受け取る方法
    2. 9.2 サポート・リソース
    3. 9.3 商標
    4. 9.4 静電気放電に関する注意事項
    5. 9.5 用語集
  11. 10Revision History
  12. 11Mechanical, Packaging, and Orderable Information

パッケージ・オプション

メカニカル・データ(パッケージ|ピン)
サーマルパッド・メカニカル・データ
発注情報

Application Curves

The radar chip waveform used for testing is a non-linear frequency modulated (NLFM) pulse, lasting 4096 samples at the 250MSPS complex input rate. At baseband, the frequency ramps from -100MHz to + 100MHz, following a frequency ramp curve developed by Price and shown in Equation 6 [Price R. Chebyshev Low Pulse Compression Sidelobes via a Nonlinear FM. National Radio Science Meeting of URSI; PortSaid, Egypt: 1979.] with T = 4096 samples, B = 0.8, Bl = 0.5611 and Bc = 0.238.

Equation 6. ff,Bl, Bc=B×t-T2T×Bl+Bc1-4t-T22T2

The NLFM Chirp frequency ramp is shown in Figure 8-13, complex time domain baseband waveform inFigure 8-14, baseband frequency spectrum in Figure 8-15 and auto-correlation in Figure 8-16.

DDS39RF10 DDS39RFS10 NLFM Frequency
            RampFigure 8-13 NLFM Frequency Ramp
DDS39RF10 DDS39RFS10 Digital
            Spectrum for NLFM ChirpFigure 8-15 Digital Spectrum for NLFM Chirp
DDS39RF10 DDS39RFS10 Complex Time
            Domain of NLFM Chirp (Red = real, Black = imag)Figure 8-14 Complex Time Domain of NLFM Chirp (Red = real, Black = imag)
DDS39RF10 DDS39RFS10 Auto-correlation of NLFM ChirpFigure 8-16 Auto-correlation of NLFM Chirp

The output spectra for the NLFM Chirp at 3.2GHz is shown in Figure 8-17. The largest spur is the duty-cycle image at 4.8GHz, which is suppressed 50dB. Figure 8-18 shows a 1 GHz span centered at 3.2GHz. the interpolation filters confine the output spectrum to a 250MHz wide band at 3.2GHz. The spectra purity of the 200MHz is shown with a fullscale tone in Figure 8-19. The largest spurs are ~ 80dBc at 3.16GHz, which is the 4th harmonic (aliased back into 1st Nyquist zone), and the 6th harmonic at ~ 86dBc.

DDS39RF10 DDS39RFS10 NLFM Chirp
            Output Spectra across0 - 8GHzFigure 8-17 NLFM Chirp Output Spectra across
0 - 8GHz
DDS39RF10 DDS39RFS10 In Band Single Tone Frequency
            Spectra with fOUT = 3.211GHzFigure 8-19 In Band Single Tone Frequency Spectra with fOUT = 3.211GHz
DDS39RF10 DDS39RFS10 NLFM Chirp Output Spectra across1GHzFigure 8-18 NLFM Chirp Output Spectra across
1GHz

The output phase noise for a tone at 3.2GHz using the recommended clocking circuit is shown in Figure 8-20. The additive phase noise for the DAC by itself is shown in Figure 8-21.

DDS39RF10 DDS39RFS10 Output Phase Noise at 3.2GHz using
          Recommended Clock Circuit Figure 8-20 Output Phase Noise at 3.2GHz using Recommended Clock Circuit
DDS39RF10 DDS39RFS10 DAC Additive Phase Noise at
          3.2GHz Figure 8-21 DAC Additive Phase Noise at 3.2GHz