SLLSEC4B June 2013 – August 2016 HVDA551-Q1 , HVDA553-Q1
PRODUCTION DATA.
MIN | MAX | UNIT | |||
---|---|---|---|---|---|
VCC | Supply voltage | –0.3 | 6 | V | |
VIO | I/O supply voltage | –0.3 | 6 | V | |
Voltage at bus terminals (CANH, CANL) | –27 | 40 | V | ||
IO | Receiver output current (RXD) | 20 | mA | ||
VI | Voltage input (TXD, STB, S) | HVDA55x | –0.3 | 6 and VI ≤ VIO + 0.3 | V |
HVDA553 | –0.3 | 6 | |||
TJ | Operating virtual-junction temperature | –40 | 150 | °C | |
Tstg | Storage temperature | 150 | °C |
VALUE | UNIT | ||||
---|---|---|---|---|---|
V(ESD) | Electrostatic discharge | Human-body model (HBM)(1) | All pins except 6 and 7 | ±4000 | V |
Pins 6 and 7(2) | ±12000 | ||||
Charged-device model (CDM)(3) | ±1000 | ||||
IEC 61000-4-2 according to IBEE CAN EMC test specification(4) | Pins 6, 7 to 2 | ±7000 | |||
ISO 7637 transients according to IBEE CAN EMC test specification(5) | Pulse 1 | –100 | |||
Pulse 2a | 75 | ||||
Pulse 3a | –150 | ||||
Pulse 3b | 100 |
MIN | MAX | UNIT | |||
---|---|---|---|---|---|
VCC | Supply voltage | 4.68 | 5.33 | V | |
VIO | I/O supply voltage | 3 | 5.33 | V | |
VI or VIC | Voltage at any bus terminal (separately or common mode) | –12 | 12 | V | |
VIH | High-level input voltage, TXD, STB (for HVD553, VIO = VCC) | 0.7 × VIO | VIO | V | |
VIL | Low-level input voltage, TXD, STB (for HVD553, VIO = VCC) | 0 | 0.3 × VIO | V | |
VID | Differential input voltage, bus (between CANH and CANL) | –6 | 6 | V | |
IOH | High-level output current, RXD | –2 | mA | ||
IOL | Low-level output current, RXD | 2 | mA | ||
TA | Operating ambient free-air temperature (see Thermal Information) | –40 | 125 | °C |
THERMAL METRIC(1) | HVDA55x-Q1 | UNIT | ||
---|---|---|---|---|
D (SOIC) | ||||
8 PINS | ||||
RθJA | Junction-to-ambient thermal resistance | Low-K thermal resistance | 140 | °C/W |
High-K thermal resistance | 112 | |||
RθJC(top) | Junction-to-case (top) thermal resistance | 56 | °C/W | |
RθJB | Junction-to-board thermal resistance | 50 | °C/W | |
ψJT | Junction-to-top characterization parameter | 13 | °C/W | |
ψJB | Junction-to-board characterization parameter | 55 | °C/W | |
RθJC(bot) | Junction-to-case (bottom) thermal resistance | — | °C/W |
PARAMETER | TEST CONDITIONS | MIN | TYP(1) | MAX | UNIT | ||
---|---|---|---|---|---|---|---|
HVDA551 SUPPLY | |||||||
ICC | 5-V supply current | Standby mode (HVDA551 only), STB at VIO, VCC = 5.33 V, VIO = 3 V, TXD at VIO (2) | 5 | µA | |||
Normal mode (dominant), TXD at 0 V, 60-Ω load, STB at 0 V |
50 | 70 | mA | ||||
Normal mode (recessive), TXD at VIO, no load, STB at 0 V | 6.75 | 10 | |||||
IIO | I/O supply current | Standby mode (HVDA551 only), STB at VIO , VCC = 5.33 V or 0 V, RXD floating, TXD at VIO, TA = –40°C, 25°C, 125°C(3) | 6.5 | 15 | µA | ||
Normal mode (dominant), VCC = 5.33 V, RXD floating, TXD at 0 V | 85 | 300 | |||||
Normal mode (recessive), VCC = 5.33 V, RXD floating, TXD at VIO | 70 | 300 | |||||
UVVCC | Undervoltage detection | On VCC for forced standby mode | 3.2 | 3.6 | 4 | V | |
VHYS(UVVCC) | Hysteresis voltage | For undervoltage detection on UVVCC for standby mode | 200 | mV | |||
UVVIO | Undervoltage detection | On VIO for forced standby mode | 1.9 | 2.45 | 2.95 | V | |
VHYS(UVVIO) | Hysteresis voltage | For undervoltage detection on UVVIO for forced standby mode | 130 | mV | |||
HVDA553 SUPPLY | |||||||
ICC | 5-V supply current | Standby mode (HVDA553 only), STB at VCC, VCC = 5.33 V, TXD at VCC(2) | 12 | µA | |||
Normal mode (dominant), TXD at 0 V, 60-Ω load, STB at 0 V | 50 | 70 | mA | ||||
Normal mode (recessive), TXD at VCC, no load, STB at 0 V | 6.75 | 10 | |||||
UVVCC | Undervoltage detection | On VCC for forced standby mode | 3.2 | 3.6 | 4 | V | |
VHYS(UVVCC) | Hysteresis voltage | For undervoltage detection on UVVCC for standby mode | 200 | mV | |||
DRIVER | |||||||
VO(D) | Bus output voltage (dominant) | CANH, VI = 0 V, STB at 0 V, RL = 60 Ω, see Figure 2 and Figure 16 | 2.9 | 4.5 | V | ||
CANL, VI = 0 V, STB at 0 V, RL = 60 Ω, see Figure 2 and Figure 16 | 0.8 | 1.75 | |||||
VO(R) | Bus output voltage (recessive) | VI = VIO, VIO = 3 V, STB at 0 V, RL = 60 Ω, see Figure 2 and Figure 16 | 2 | 2.5 | 3 | V | |
VO(STBY) | Bus output voltage | Standby mode (HVDA551 only), STB at VIO, RL = 60 Ω, see Figure 2 and Figure 16 |
–0.1 | 0.1 | V | ||
VOD(D) | Differential output voltage (dominant) | VI = 0 V, RL = 60 Ω, STB at 0 V, see Figure 2, Figure 16, and Figure 3 | 1.5 | 3 | V | ||
VI = 0 V, RL = 45 Ω, STB at 0 V, see Figure 2, Figure 16, and Figure 3 | 1.4 | 3 | |||||
VOD(R) | Differential output voltage (recessive) | VI = 3 V, STB at 0 V, RL = 60 Ω, see Figure 2 and Figure 16 | –0.012 | 0.012 | V | ||
VI = 3 V, STB at 0 V, no load | –0.5 | 0.05 | |||||
VSYM | Output symmetry (dominant or recessive) | VO(CANH) + VO(CANL), STB at 0 V, RL = 60 Ω, see Figure 12 | 0.9 × VCC | VCC | 1.1 × VCC | V | |
VOC(SS) | Steady-state common-mode output voltage | STB at 0 V, RL = 60 Ω, see Figure 8 | 2 | 2.5 | 3 | V | |
ΔVOC(SS) | Change in steady-state common-mode output voltage | STB at 0 V, RL = 60 Ω, see Figure 8 | 50 | mV | |||
IOS(SS)_DOM | Short-circuit steady-state output current, dominant | VCANH = 0 V, CANL open, TXD = low, see Figure 11 | –100 | mA | |||
VCANL = 32 V, CANH open, TXD = low, see Figure 11 | 100 | ||||||
IOS(SS)_REC | Short-circuit steady-state output current, recessive | –20 V ≤ VCANH ≤ 32 V, CANL open, TXD = high, see Figure 11 |
–10 | 10 | mA | ||
–20 V ≤ VCANL ≤ 32 V, CANH open, TXD = high, see Figure 11 |
–10 | 10 | |||||
CO | Output capacitance | See receiver input capacitance | |||||
RECEIVER | |||||||
VIT+ | Positive-going input threshold voltage | Normal mode, STB at 0 V, see Table 1 | 800 | 900 | mV | ||
VIT– | Negative-going input threshold voltage | Normal mode, STB at 0 V, see Table 1 | 500 | 650 | mV | ||
Vhys | Hysteresis voltage | VIT+ – VIT– | 125 | mV | |||
VIT(STBY) | Input threshold voltage | HVDA551 only, standby mode, STB at VIO | 400 | 1150 | mV | ||
II(OFF_LKG) | Power-off (unpowered) bus input leakage current | CANH = CANL = 5 V, VCC at 0 V, VIO at 0 V, TXD at 0 V | 3 | µA | |||
CI | Input capacitance to ground (CANH or CANL) | HVDA551: TXD at VIO, VIO at 3.3 V; HVDA553: TXD at VCC, VI = 0.4 sin (4E6πt) + 2.5 V |
13 | pF | |||
CID | Differential input capacitance | HVDA551: TXD at VIO, VIO at 3.3 V; HVDA553: TXD at VCC, VI = 0.4 sin(4E6πt) |
5 | pF | |||
RID | Differential input resistance | HVDA551: TXD at VIO, VIO = 3.3 V, STB at 0 V; HVDA553: TXD at VCC, STB at 0 V | 29 | 80 | kΩ | ||
RIN | Input resistance (CANH or CANL) | HVDA551: TXD at VIO, VIO = 3.3 V, STB at 0 V; HVDA553: TXD at VCC, STB at 0 V | 14.5 | 25 | 40 | kΩ | |
RI(M) | Input resistance matching | [1 – RIN(CANH) / RIN(CANL))] × 100%, V(CANH) = V(CANL) |
–3% | 0% | 3% | ||
TXD PIN | |||||||
VIH | High-level input voltage | HVD553: VIO = VCC | 0.7 × VIO | V | |||
VIL | Low-level input voltage | HVD553: VIO = VCC | 0.3 × VIO | V | |||
IIH | High-level input current | HVDA551: TXD at VIO; HVDA553: TXD at VCC | –2 | 2 | µA | ||
IIL | Low-level input current | TXD at 0 V | –100 | –7 | µA | ||
RXD PIN | |||||||
VOH | High-level output voltage | HVD553: VIO = VCC, IO = –2 mA, see Figure 6 | 0.8 × VIO | V | |||
VOL | Low-level output voltage | HVD553: VIO = VCC, IO = 2 mA, see Figure 6 | 0.2 × VIO | V | |||
STB PIN | |||||||
VIH | High-level input voltage | HVD553: VIO = VCC | 0.7 × VIO | V | |||
VIL | Low-level input voltage | HVD553: VIO = VCC | 0.3 × VIO | V | |||
IIH | High-level input current | HVDA551: STB at VIO; HVDA553: STB at VCC | –2 | 2 | µA | ||
IIL | Low-level input current | STB at 0 V | –20 | µA | |||
SPLIT PIN (HVDA553 ONLY) | |||||||
VO | Output voltage | –500 µA < IO < 500 µA | 0.3 × VCC | 0.5 × VCC | 0.7 × VCC | V | |
IO(STB) | Leakage current | Standby mode, STB at VCC, –12 V ≤ IO ≤ 12 V | –5 | 5 | µA | ||
POWER DISSIPATION AND THERMAL SHUTDOWN | |||||||
PD | Average power dissipation | VCC = 5 V, VIO = VCC, TJ = 27°C, RL = 60 Ω, STB at 0 V, Input to TXD at 500 kHz, 50% duty cycle square wave, CL at RXD = 15 pF |
140 | mW | |||
VCC = 5.33 V, VIO = VCC, TJ = 130°C, RL = 60 Ω , STB at 0 V, Input to TXD at 500 kHz, 50% duty cycle square wave, CL at RXD = 15 pF |
215 | ||||||
Thermal shutdown temperature | 185 | °C |
PARAMETER | TEST CONDITIONS | MIN | TYP(1) | MAX | UNIT | |
---|---|---|---|---|---|---|
PROPAGATION TIME (LOOP TIME TXD to RXD) | ||||||
tPROP(LOOP1) | Total loop delay 1 | Driver input (TXD) to receiver output (RXD), recessive to dominant, see Figure 9, STB at 0 V | 70 | 230 | ns | |
tPROP(LOOP2) | Total loop delay 2 | Driver input (TXD) to receiver output (RXD), dominant to recessive, see Figure 9, STB at 0 V | 70 | 230 | ||
DRIVER | ||||||
tPLH | Propagation delay time, low-to-high level output |
STB at 0 V, see Figure 4 | 65 | ns | ||
tPHL | Propagation delay time, high-to-low level output |
STB at 0 V, see Figure 4 | 50 | ns | ||
tR | Differential output signal rise time | STB at 0 V, see Figure 4 | 25 | ns | ||
tF | Differential output signal fall time | STB at 0 V, see Figure 4 | 55 | ns | ||
tEN | Enable time from standby or silent mode to normal mode, dominant | See Figure 7 | 30 | µs | ||
t(DOM)(2) | Dominant time-out | See Figure 10 | 1200 | 2000 | 2800 | µs |
RECEIVER | ||||||
tPLH | Propagation delay time, low-to-high-level output |
STB at 0 V , see Figure 6 | 95 | ns | ||
tPHL | Propagation delay time, high-to-low-level output |
STB at 0 V , see Figure 6 | 60 | ns | ||
tR | Output signal rise time | STB at 0 V , see Figure 6 | 13 | ns | ||
tF | Output signal fall time | STB at 0 V , see Figure 6 | 10 | ns | ||
tBUS | Dominant time | HVDA551 only, required on bus for wake-up from standby, STB at VIO, see Figure 18 and Figure 19 | 1.5 | 5 | µs | |
tCLEAR | Recessive time | HVDA551 only, on the bus to clear the standby mode receiver output (RXD) if standby mode is entered while bus is dominant, STB at VIO, see Figure 18 and Figure 19 | 1.5 | 5 | µs |