JAJSA34K November   2002  – December 2016 LP2996-N , LP2996A

PRODUCTION DATA.  

  1. 特長
  2. アプリケーション
  3. 概要
  4. 改訂履歴
  5. Pin Configuration and Functions
  6. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 Typical Characteristics
  7. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
    4. 7.4 Device Functional Modes
      1. 7.4.1 Start-Up
      2. 7.4.2 Normal Operation
      3. 7.4.3 Shutdown
  8. Applications and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Applications
      1. 8.2.1 Typical SSTL-2 Application Circuit
        1. 8.2.1.1 Design Requirements
        2. 8.2.1.2 Detailed Design Procedure
          1. 8.2.1.2.1 Input Capacitor
          2. 8.2.1.2.2 Output Capacitor
            1. 8.2.1.2.2.1 Aluminum Electrolytics
            2. 8.2.1.2.2.2 Ceramic Capacitors
            3. 8.2.1.2.2.3 Hybrid Capacitors
            4. 8.2.1.2.2.4 PC Application Considerations
        3. 8.2.1.3 Application Curves
      2. 8.2.2 Other Application Circuits
        1. 8.2.2.1 SSTL-2 Applications
        2. 8.2.2.2 DDR-II Applications
        3. 8.2.2.3 DDR-III Applications
      3. 8.2.3 Level Shifting
      4. 8.2.4 HSTL Applications
      5. 8.2.5 QDR Applications
  9. Power Supply Recommendations
  10. 10Layout
    1. 10.1 Layout Guidelines
    2. 10.2 Layout Examples
    3. 10.3 Thermal Considerations
  11. 11デバイスおよびドキュメントのサポート
    1. 11.1 ドキュメントのサポート
      1. 11.1.1 関連資料
    2. 11.2 関連リンク
    3. 11.3 ドキュメントの更新通知を受け取る方法
    4. 11.4 コミュニティ・リソース
    5. 11.5 商標
    6. 11.6 静電気放電に関する注意事項
    7. 11.7 用語集
  12. 12メカニカル、パッケージ、および注文情報

パッケージ・オプション

メカニカル・データ(パッケージ|ピン)
サーマルパッド・メカニカル・データ
発注情報

Specifications

Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)(1)(2)
MIN MAX UNIT
AVIN to GND −0.3 6 V
PVIN to GND –0.3 AVIN V
Input voltage (VDDQ)(3) −0.3 6 V
Junction temperature, TJ 150 °C
Storage temperature, Tstg –65 150 °C
Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
If Military/Aerospace specified devices are required, please contact the Texas Instruments Sales Office/Distributors for availability and specifications.
VDDQ voltage must be less than 2 × (AVIN – 1) or 6 V, whichever is smaller.

ESD Ratings

VALUE UNIT
V(ESD) Electrostatic discharge Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1) ±1000 V
The human body model is a 100-pF capacitor discharged through a 1.5-kΩ resistor into each pin.

Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)
MIN MAX UNIT
AVIN to GND 2.2 5.5 V
PVIN supply voltage 0 AVIN V
SD input voltage 0 AVIN V
TJ Junction temperature(1) 0 125 °C
At elevated temperatures, devices must be derated based on thermal resistance.

Thermal Information

THERMAL METRIC LP2996-N, LP2996A UNIT
D (SOIC) DDA (SO) NHP (WQFN)
8 PINS 8 PINS 16 PINS
RθJA Junction-to-ambient thermal resistance 119.5 56.5 52.7 °C/W
RθJC(top) Junction-to-case (top) thermal resistance 65.3 65.1 50.1 °C/W
RθJB Junction-to-board thermal resistance 59.8 36.5 30.1 °C/W
ψJT Junction-to-top characterization parameter 16.7 15.9 0.7 °C/W
ψJB Junction-to-board characterization parameter 59.3 36.5 30.2 °C/W
RθJC(bot) Junction-to-case (bottom) thermal resistance 8.4 9.8 °C/W

Electrical Characteristics

Minimum and maximum limits apply over the full operating temperature range (TJ = 0°C to 125°C) and are specified through test, design, or statistical correlation. Typical values represent the most likely parametric norm (TJ = 25°C), and are provided for reference purposes only. Unless otherwise specified, AVIN = PVIN = 2.5 V and VDDQ = 2.5 V.(1)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
VREF VREF voltage (DDR I) VDD = VDDQ = 2.3 V 1.135 1.158 1.185 V
VDD = VDDQ = 2.5 V 1.235 1.258 1.285
VDD = VDDQ = 2.7 V 1.335 1.358 1.385
VREF voltage (DDR II) PVIN = VDDQ = 1.7 V 0.837 0.86 0.887 V
PVIN = VDDQ = 1.8 V 0.887 0.91 0.937
PVIN = VDDQ = 1.9 V 0.936 0.959 0.986
VREF voltage (DDR III) PVIN = VDDQ = 1.35 V 0.669 0.684 0.699 V
PVIN = VDDQ = 1.5 V 0.743 0.758 0.773
PVIN = VDDQ = 1.6 V 0.793 0.808 0.823
ZVREF VREF output impedance IREF = –30 to 30 µA 2.5
VTT VTT output voltage (DDR I)(2) IOUT = 0 A VDD = VDDQ = 2.3 V 1.12 1.159 1.19 V
VDD = VDDQ = 2.5 V 1.21 1.259 1.29
VDD = VDDQ = 2.7 V 1.32 1.359 1.39
IOUT = ±1.5 A VDD = VDDQ = 2.3 V 1.125 1.159 1.19
VDD = VDDQ = 2.5 V 1.225 1.259 1.29
VDD = VDDQ = 2.7 V 1.325 1.359 1.39
VTT output voltage (DDR II)(2) IOUT = 0 A, AVIN = 2.5 V PVIN = VDDQ = 1.7 V 0.822 0.856 0.887 V
PVIN = VDDQ = 1.8 V 0.874 0.908 0.939
PVIN = VDDQ = 1.9 V 0.923 0.957 0.988
IOUT = ±0.5 A, AVIN = 2.5 V PVIN = VDDQ = 1.7 V 0.82 0.856 0.89
PVIN = VDDQ = 1.8 V 0.87 0.908 0.94
PVIN = VDDQ = 1.9 V 0.92 0.957 0.99
VTT output voltage (DDR III)(2) IOUT = 0 A, AVIN = 2.5 V PVIN = VDDQ = 1.35 V 0.656 0.677 0.698 V
PVIN = VDDQ = 1.5 V 0.731 0.752 0.773
PVIN = VDDQ = 1.6 V 0.781 0.802 0.823
IOUT = 0.2 A, AVIN = 2.5 V, PVIN = VDDQ = 1.35 V 0.667 0.688 0.71
IOUT = –0.2 A, AVIN = 2.5 V, PVIN = VDDQ = 1.35 V 0.641 0.673 0.694
IOUT = 0.4 A, AVIN = 2.5 V, PVIN = VDDQ = 1.5 V 0.74 0.763 0.786
IOUT = –0.4 A, AVIN = 2.5 V, PVIN = VDDQ = 1.5 V 0.731 0.752 0.773
IOUT = 0.5 A, AVIN = 2.5 V, PVIN = VDDQ = 1.6 V 0.79 0.813 0.836
IOUT = –0.5 A, AVIN = 2.5 V, PVIN = VDDQ = 1.6 V 0.781 0.802 0.823
VOSVtt VTT output voltage offset
(VREF – VTT) for DDR I(2)
IOUT = 0 A –30 0 30 mV
IOUT = –1.5 A –30 0 30
IOUT = 1.5 A –30 0 30
VTT output voltage offset
(VREF – VTT) for DDR II(2)
IOUT = 0 A –30 0 30 mV
IOUT = –0.5 A –30 0 30
IOUT = 0.5 A –30 0 30
VTT output voltage offset
(VREF – VTT) for DDR III(2)
IOUT = 0 A –30 0 30 mV
IOUT = ±0.2 A –30 0 30
IOUT = ±0.4 A –30 0 30
IOUT = ±0.5 A –30 0 30
IQ Quiescent current(3) IOUT = 0 A 320 500 µA
ZVDDQ VDDQ input impedance 100
ISD Quiescent current in shutdown(3) SD is low 115 150 µA
IQ_SD Shutdown leakage current SD is low 2 5 µA
VIH Minimum shutdown, high level 1.9 V
VIL Maximum shutdown, low level 0.8 V
IV VTT leakage current in shutdown SD is low, VTT = 1.25 V 1 10 µA
ISENSE VSENSE input current 13 nA
TSD Thermal shutdown 165 °C
TSD_HYS Thermal shutdown hysteresis 10 °C
VDD is defined as VDD = AVIN = PVIN.
VTT load regulation is tested by using a 10-ms current pulse and measuring VTT.
Quiescent current defined as the current flow into AVIN.

Typical Characteristics

Unless otherwise specified, AVIN = PVIN = 2.5 V.
LP2996-N LP2996A 20057520.gif Figure 1. IQ vs AVIN In Shutdown
LP2996-N LP2996A 20057522.gif Figure 3. VIH and VIL
LP2996-N LP2996A 20057521.gif Figure 2. IQ vs AVIN
LP2996-N LP2996A 20057523.gif Figure 4. VREF vs IREF
LP2996-N LP2996A 20057524.gif Figure 5. VREF vs VDDQ
LP2996-N LP2996A 20057526.gif Figure 7. VTT vs VDDQ
LP2996-N LP2996A 20057528.gif Figure 9. IQ vs AVIN Temperature
LP2996-N LP2996A 20057532.gif
VDDQ = 2.5 V PVIN = 2.5 V
Figure 11. Maximum Sourcing Current vs AVIN
LP2996-N LP2996A 20057534.gif
VDDQ = 2.5 V
Figure 13. Maximum Sinking Current vs AVIN
LP2996-N LP2996A 20057536.gif
VDDQ = 1.8 V
Figure 15. Maximum Sinking Current vs AVIN
LP2996-N LP2996A 20057525.gif Figure 6. VTT vs IOUT
LP2996-N LP2996A 20057527.gif Figure 8. IQ vs AVIN in Shutdown Temperature
LP2996-N LP2996A 20057531.gif
VDDQ = 2.5 V PVIN = 1.8 V
Figure 10. Maximum Sourcing Current vs AVIN
LP2996-N LP2996A 20057533.gif
VDDQ = 2.5 V PVIN = 3.3 V
Figure 12. Maximum Sourcing Current vs AVIN
LP2996-N LP2996A 20057535.gif
VDDQ = 1.8 V PVIN = 1.8 V
Figure 14. Maximum Sourcing Current vs AVIN
LP2996-N LP2996A 20057537.gif
VDDQ = 1.8 V PVIN = 3.3 V
Figure 16. Maximum Sourcing Current vs AVIN