JAJSGX8C April   2002  – February 2019 SN65LVDT14 , SN65LVDT41

PRODUCTION DATA.  

  1. 特長
  2. アプリケーション
  3. 概要
    1.     Device Images
      1.      SN65LVDT41 の機能図
      2.      SN65LVDT14 の機能図
  4. 改訂履歴
  5. 概要(続き)
  6. Pin Configuration and Functions
    1.     SN65LVDT41 Pin Functions
    2.     SN65LVDT14 Pin Functions
  7. Specifications
    1. 7.1  Absolute Maximum Ratings
    2. 7.2  ESD Ratings
    3. 7.3  Recommended Operating Conditions
    4. 7.4  Thermal Information
    5. 7.5  Receiver Electrical Characteristics
    6. 7.6  Driver Electrical Characteristics
    7. 7.7  Device Electrical Characteristics
    8. 7.8  Receiver Switching Characteristics
    9. 7.9  Driver Switching Characteristics
    10. 7.10 Typical Characteristics
      1. 7.10.1 Receiver
      2. 7.10.2 Driver
  8. Parameter Measurement Information
  9. Detailed Description
    1. 9.1 Overview
    2. 9.2 Functional Block Diagram
    3. 9.3 Feature Description
      1. 9.3.1 SN65LVDTxx Driver and Receiver Functionality
      2. 9.3.2 Integrated Termination
      3. 9.3.3 SN65LVDTxx Equivalent Circuits
    4. 9.4 Device Functional Modes
  10. 10Application and Implementation
    1. 10.1 Application Information
      1. 10.1.1 Extending a Serial Peripheral Interface Using LVDS Signaling Over Differential Transmission Cables
    2. 10.2 Typical Application
      1. 10.2.1 Design Requirements
      2. 10.2.2 Detailed Design Procedure
        1. 10.2.2.1 SPI Propagation Delay Limitations
        2. 10.2.2.2 Interconnecting Media
        3. 10.2.2.3 Input Fail-Safe Biasing
        4. 10.2.2.4 Power Decoupling Recommendations
        5. 10.2.2.5 PCB Transmission Lines
        6. 10.2.2.6 Probing LVDS Transmission Lines on PCB
      3. 10.2.3 Application Curve
  11. 11Power Supply Recommendations
  12. 12Layout
    1. 12.1 Layout Guidelines
      1. 12.1.1 Microstrip vs. Stripline Topologies
      2. 12.1.2 Dielectric Type and Board Construction
      3. 12.1.3 Recommended Stack Layout
      4. 12.1.4 Separation Between Traces
      5. 12.1.5 Crosstalk and Ground Bounce Minimization
      6. 12.1.6 Decoupling
    2. 12.2 Layout Examples
  13. 13デバイスおよびドキュメントのサポート
    1. 13.1 関連資料
    2. 13.2 ドキュメントの更新通知を受け取る方法
    3. 13.3 関連リンク
    4. 13.4 コミュニティ・リソース
    5. 13.5 商標
    6. 13.6 静電気放電に関する注意事項
    7. 13.7 Glossary
  14. 14メカニカル、パッケージ、および注文情報

パッケージ・オプション

デバイスごとのパッケージ図は、PDF版データシートをご参照ください。

メカニカル・データ(パッケージ|ピン)
  • PW|20
サーマルパッド・メカニカル・データ
発注情報

Recommended Stack Layout

Following the choice of dielectrics and design specifications, the designer must decide how many levels to use in the stack. To reduce the LVCMOS/LVTTL to LVDS crosstalk, it is good practice to have at least two separate signal planes as shown in Figure 25.

SN65LVDT14 SN65LVDT41 lo_4lpcbb_slls373.gifFigure 25. Four-Layer PCB Board

NOTE

The separation between layers 2 and 3 should be 127 μm (0.005 in). By keeping the power and ground planes tightly coupled, the increased capacitance acts as a bypass for transients.

One of the most common stack configurations is the six-layer board, as shown in Figure 26.

SN65LVDT14 SN65LVDT41 lo_6lpcbb_slls373.gifFigure 26. Six-Layer PCB Board

In this particular configuration, it is possible to isolate each signal layer from the power plane by at least one ground plane. The result is improved signal integrity, but fabrication is more expensive. Using the 6-layer board is preferable, because it offers the layout designer more flexibility in varying the distance between signal layers and referenced planes in addition to ensuring reference to a ground plane for signal layers 1 and 6.