SLOS823D December   2012  – March 2020 THS4531A

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
    1.     1-kHz FFT Plot on Audio Analyzer
  4. Revision History
  5. Related Products
  6. Pin Configuration and Functions
    1.     Pin Functions
  7. Specifications
    1. 7.1 Absolute Maximum Ratings
    2. 7.2 ESD Ratings
    3. 7.3 Recommended Operating Conditions
    4. 7.4 Thermal Information
    5. 7.5 Electrical Characteristics: VS = 2.7 V
    6. 7.6 Electrical Characteristics: VS = 5 V
    7. 7.7 Typical Characteristics
      1. 7.7.1 Typical Characteristics: VS = 2.7 V
      2. 7.7.2 Typical Characteristics: VS = 5 V
  8. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
      1. 8.3.1 Input Common-Mode Voltage Range
        1. 8.3.1.1 Setting the Output Common-Mode Voltage
      2. 8.3.2 Power Down
    4. 8.4 Device Functional Modes
  9. Application and Implementation
    1. 9.1 Application Information
      1. 9.1.1  Frequency Response, and Output Impedance
      2. 9.1.2  Distortion
      3. 9.1.3  Slew Rate, Transient Response, Settling Time, Overdrive, Output Voltage, and Turnon and Turnoff Time
      4. 9.1.4  Common-Mode and Power Supply Rejection
      5. 9.1.5  VOCM Input
      6. 9.1.6  Balance Error
      7. 9.1.7  Single-Supply Operation
      8. 9.1.8  Low-Power Applications and the Effects of Resistor Values on Bandwidth
      9. 9.1.9  Driving Capacitive Loads
      10. 9.1.10 Audio Performance
      11. 9.1.11 Audio On and Off Pop Performance
    2. 9.2 Typical Applications
      1. 9.2.1 SAR ADC Performance: THS4531A and ADS8321 Combined Performance
        1. 9.2.1.1 Design Requirements
        2. 9.2.1.2 Detailed Design Procedure
        3. 9.2.1.3 Application Curve
      2. 9.2.2 Audio ADC Driver Performance: THS4531A and PCM4204 Combined Performance
        1. 9.2.2.1 Detailed Design Procedure
        2. 9.2.2.2 Application Curves
      3. 9.2.3 SAR ADC Performance: THS4531A and ADS7945 Combined Performance
        1. 9.2.3.1 Design Requirements
        2. 9.2.3.2 Detailed Design Procedure
        3. 9.2.3.3 Application Curve
      4. 9.2.4 Differential-Input to Differential-Output Amplifier
        1. 9.2.4.1 AC-Coupled, Differential-Input to Differential-Output Design Issues
      5. 9.2.5 Single-Ended to Differential FDA Configuration
        1. 9.2.5.1 Input Impedance
      6. 9.2.6 Single-Ended Input to Differential Output Amplifier
        1. 9.2.6.1 AC-Coupled Signal Path Considerations for Single-Ended Input to Differential Output Conversion
        2. 9.2.6.2 DC-Coupled Input Signal Path Considerations for Single-Ended to Differential Conversion
        3. 9.2.6.3 Resistor Design Equations for the Single-Ended to Differential Configuration of the FDA
      7. 9.2.7 Differential Input to Single-Ended Output Amplifier
  10. 10Power Supply Recommendations
  11. 11Layout
    1. 11.1 Layout Guidelines
    2. 11.2 Layout Example
  12. 12Device and Documentation Support
    1. 12.1 Device Support
      1. 12.1.1 Third-Party Products Disclaimer
    2. 12.2 Documentation Support
    3. 12.3 Community Resources
    4. 12.4 Trademarks
    5. 12.5 Electrostatic Discharge Caution
    6. 12.6 Glossary
  13. 13Mechanical, Packaging, and Orderable Information

パッケージ・オプション

メカニカル・データ(パッケージ|ピン)
サーマルパッド・メカニカル・データ

Driving Capacitive Loads

The THS4531A is designed for a nominal parasitic capacitive load of 2 pF (differentially). When driving capacitive loads greater than this, TI recommends using small resisters (RO) in series with the output as close to the device as possible. Without RO, capacitance on the output interacts with the output impedance of the amplifier causing phase shift in the loop gain of the amplifier that reduces the phase margin resulting in:

  • Peaking in the frequency response.
  • Overshoot, undershoot, and ringing in the time domain response with a pulse or square-wave signal.
  • May lead to instability or oscillation.

Inserting RO compensates the phase shift and restores the phase margin, but it also limits bandwidth. The circuit shown in Figure 71 is used to test for best RO versus capacitive loads, CL, with a capacitance placed differential across the VOUT+ and VOUT- along with 2-kΩ load resistor, and the output is measure with a differential probe. Figure 77 shows the suggested values of RO versus capacitive loads, CL, and Figure 78 shows the frequency response with various values. Performance is the same on both 2.7-V and 5-V supply.

THS4531A G068_RO_vs_CLOAD.pngFigure 77. Recommended Series Output Resistor vs Capacitive Load for Flat Frequency Response
THS4531A G069_Gain_vs_Freq_CLOAD.pngFigure 78. Frequency Response for Various RO and CL Values