JAJSEQ9E November   2013  – December 2017 TPS56520 , TPS56720 , TPS56920 , TPS56C20

PRODUCTION DATA.  

  1. 特長
  2. アプリケーション
  3. 概要
    1.     Device Images
      1.      代表的なアプリケーション回路
  4. 改訂履歴
  5. 概要(続き)
  6. List of Devices
  7. Pin Configuration and Functions
    1.     Pin Functions
    2.     Pin Functions
  8. Specifications
    1. 8.1 Absolute Maximum Ratings
    2. 8.2 ESD Ratings
    3. 8.3 Recommended Operating Conditions
    4. 8.4 Thermal Information
    5. 8.5 Electrical Characteristics
    6. 8.6 Timing Requirements
    7. 8.7 Switching Characteristics
    8. 8.8 Typical Characteristics
  9. Detailed Description
    1. 9.1 Overview
    2. 9.2 Functional Block Diagram
    3. 9.3 Feature Description
      1. 9.3.1 PWM Operation
      2. 9.3.2 PWM Frequency and Adaptive On-Time Control
      3. 9.3.3 VIN and Power VIN Terminals (VIN and PVIN)
      4. 9.3.4 Auto-Skip Eco-mode™ Control
      5. 9.3.5 Soft Start and Pre-Biased Soft Start
      6. 9.3.6 Power Good
      7. 9.3.7 Overcurrent Protection
      8. 9.3.8 UVLO Protection
    4. 9.4 Device Functional Modes
      1. 9.4.1 Operation at Light Loads
    5. 9.5 Programming
      1. 9.5.1 I2C Interface
      2. 9.5.2 I2C Protocol
      3. 9.5.3 I2C Chip Address Byte
    6. 9.6 Register Maps
      1. 9.6.1 I2C Register Address Byte
      2. 9.6.2 Output Voltage Registers
      3. 9.6.3 CheckSum Bit (VOUT Register Only)
      4. 9.6.4 Control Registers
      5. 9.6.5 Latchoff
  10. 10Applications and Implementation
    1. 10.1 Application Information
    2. 10.2 Typical Application
      1. 10.2.1 TPS56520, TPS56720 and TPS56920, 5-A, 7-A, and 9-A Converter
        1. 10.2.1.1 Design Requirements
        2. 10.2.1.2 Detailed Design Procedure
          1. 10.2.1.2.1 Output Voltage Resistors Selection
            1. 10.2.1.2.1.1 Output Filter Selection
          2. 10.2.1.2.2 Input Capacitor Selection
          3. 10.2.1.2.3 Bootstrap Capacitor Selection
          4. 10.2.1.2.4 VREG5 Capacitor Selection
      2. 10.2.2 TPS56520, TPS56720 and TPS56920 Application Performance Curves
      3. 10.2.3 TPS56C20 12-A Converter
        1. 10.2.3.1 Design Requirements
        2. 10.2.3.2 Design Procedure
        3. 10.2.3.3 TPS56C20 Application Performance Curves
  11. 11Power Supply Recommendations
  12. 12Layout
    1. 12.1 Layout Guidelines
    2. 12.2 Layout Example
  13. 13デバイスおよびドキュメントのサポート
    1. 13.1 デバイス・サポート
      1. 13.1.1 開発サポート
    2. 13.2 ドキュメントのサポート
      1. 13.2.1 関連資料
    3. 13.3 関連リンク
    4. 13.4 商標
    5. 13.5 静電気放電に関する注意事項
    6. 13.6 Glossary
  14. 14メカニカル、パッケージ、および注文情報

パッケージ・オプション

デバイスごとのパッケージ図は、PDF版データシートをご参照ください。

メカニカル・データ(パッケージ|ピン)
  • PWP|20
サーマルパッド・メカニカル・データ
発注情報

Overcurrent Protection

The output overcurrent protection (OCP) is implemented using a cycle-by-cycle valley detect control circuit. The switch current is monitored by measuring the low-side FET switch voltage between the SW terminal and GND. This voltage is proportional to the switch current. To improve accuracy, the voltage sensing is temperature compensated.

During the on time of the high-side FET switch, the switch current increases at a linear rate determined by VIN, VOUT, the on-time and the output inductor value. During the on time of the low-side FET switch, this current decreases linearly. The average value of the switch current is the load current Iout. The TPS56X20 constantly monitors the low-side FET switch voltage, which is proportional to the switch current, during the low-side on-time. If the measured voltage is above the voltage proportional to the current limit, an internal counter is incremented per each switching cycle and the converter maintains the low-side switch on until the measured voltage is below the voltage corresponding to the current limit at which time the switching cycle is terminated and a new switching cycle begins. In subsequent switching cycles, the on-time is set to a fixed value and the current is monitored in the same manner.

There are some important considerations for this type of overcurrent protection. The peak current is the average load current plus one half of the peak-to-peak inductor current. The valley current is the average load current minus one half of the peak-to-peak inductor current. Since the valley current is used to detect the overcurrent threshold, the load current is higher than the overcurrent threshold. Also, when the current is being limited, the output voltage tends to fall as the demanded load current may be higher than the current available from the converter. When the output voltage becomes lower than 60% of the target voltage, the UVP comparator detects it. Depending on the values of Hiccup Mode bit and UVP Latchoff Mode bit in the Control A and Control B registers, the device may enter Hiccup Mode or Latchoff Mode or keep running under cycle-by-cycle current limiting.

The TPS56X20 also implements reverse overcurrent protection. When reverse overcurrent protection is triggered, the high-side MOSFET turns on for the preset on-time and then the low-side MOSFET turns on to monitor the switch valley current. The high-side MOSFET turns on again if either VFB pin voltage drops below reference voltage, or the reverse switch current hits the reverse current trip point.