JAJSEW5 March 2018 TPS62243-Q1 , TPS62244-Q1
PRODUCTION DATA.
The power save mode is enabled. If the load current decreases, the converter enters power save mode operation automatically. During power save mode, the converter skips switching and operates with reduced frequency in PFM mode with a minimum-quiescent current to maintain high efficiency.
The transition from PWM mode to PFM mode occurs once the inductor current in the low-side MOSFET switch becomes zero, which indicates discontinuous conduction mode.
During the power save mode, a PFM comparator monitors the output voltage. As the output voltage falls below the PFM comparator threshold of VOUT nominal, the device starts a PFM current pulse. The high-side MOSFET switch turns on, and the inductor current ramps up. After the on-time expires, the switch turns off and the low-side MOSFET switch turns on until the inductor current becomes zero.
The converter effectively delivers a current to the output capacitor and the load. If the load is below the delivered current, the output voltage rises. If the output voltage is equal to or greater than the PFM comparator threshold, the device stops switching and enters a sleep mode with typical 15-μA current consumption.
If the output voltage is still below the PFM comparator threshold, a sequence of further PFM current pulses are generated until the PFM comparator threshold is reached. The converter starts switching again once the output voltage drops below the PFM comparator threshold.
With a fast single-threshold comparator, the output-voltage ripple during PFM mode operation can be kept to a minimum. The PFM pulse is time controlled, allowing the user to modify the charge transferred to the output capacitor by the value of the inductor. The resulting PFM output voltage ripple and PFM frequency both depend on the size of the output capacitor and the inductor value. Increasing output capacitor values and inductor values minimize the output ripple. The PFM frequency decreases with smaller inductor values and increases with larger values.
If the output current cannot be supported in PFM mode, the device exits PFM mode and enters PWM mode.