SLVS681F June   2006  – August 2014 TPS62400 , TPS62401 , TPS62402 , TPS62403 , TPS62404

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Device Options
  6. Pin Configuration and Functions
  7. Specifications
    1. 7.1 Absolute Maximum Ratings
    2. 7.2 Handling Ratings
    3. 7.3 Recommended Operating Conditions
    4. 7.4 Thermal Information
    5. 7.5 Electrical Characteristics
    6. 7.6 Typical Characteristics
  8. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
      1. 8.3.1 Converter 1
      2. 8.3.2 Converter 2
      3. 8.3.3 DEF_1 Pin Function
      4. 8.3.4 Mode Selection
      5. 8.3.5 Enable
      6. 8.3.6 Soft Start
      7. 8.3.7 Short-Circuit Protection
      8. 8.3.8 Under-Voltage Lockout
      9. 8.3.9 Thermal Shutdown
    4. 8.4 Device Functional Modes
      1. 8.4.1 Power Save Mode
      2. 8.4.2 Dynamic Voltage Positioning
      3. 8.4.3 100% Duty Cycle Low Dropout Operation
      4. 8.4.4 180° Out-Of-Phase Operation
    5. 8.5 Programming
      1. 8.5.1 EasyScale: One-Pin Serial Interface for Dynamic Output Voltage Adjustment
        1. 8.5.1.1 General
        2. 8.5.1.2 Protocol
        3. 8.5.1.3 Addressable Registers
          1. 8.5.1.3.1 Bit Decoding
          2. 8.5.1.3.2 Acknowledge
          3. 8.5.1.3.3 MODE Selection
  9. Application and Implementation
    1. 9.1 Application Information
    2. 9.2 Typical Applications
      1. 9.2.1 TPS6240x, Dual Outputs Step Down Converter
        1. 9.2.1.1 Design Requirements
        2. 9.2.1.2 Detailed Design Procedure
          1. 9.2.1.2.1 Converter1 Adjustable Default Output Voltage Setting: TPS62400
          2. 9.2.1.2.2 Converter1 Fixed Default Output Voltage Setting (TPS62401, TPS62402, TPS62403, TPS62404).
          3. 9.2.1.2.3 Converter 2 Adjustable Default Output Voltage Setting TPS62400:
          4. 9.2.1.2.4 Converter 2 Fixed Default Output Voltage Setting
          5. 9.2.1.2.5 Output Filter Design (Inductor and Output Capacitor)
            1. 9.2.1.2.5.1 Inductor Selection
            2. 9.2.1.2.5.2 Output Capacitor Selection
            3. 9.2.1.2.5.3 Input Capacitor Selection
        3. 9.2.1.3 Application Curves
      2. 9.2.2 Various Output Voltages
        1. 9.2.2.1 Design Requirements
        2. 9.2.2.2 Detailed Design Procedure
      3. 9.2.3 Dynamic Voltage Scaling on Converter 1 by DEF_1 Pin
        1. 9.2.3.1 Design Requirements
        2. 9.2.3.2 Detailed Design Procedure
  10. 10Power Supply Recommendations
  11. 11Layout
    1. 11.1 Layout Guidelines
    2. 11.2 Layout Example
  12. 12Device and Documentation Support
    1. 12.1 Related Links
    2. 12.2 Trademarks
    3. 12.3 Electrostatic Discharge Caution
    4. 12.4 Glossary
  13. 13Mechanical, Packaging, and Orderable Information

パッケージ・オプション

メカニカル・データ(パッケージ|ピン)
サーマルパッド・メカニカル・データ

7 Specifications

7.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)(1)
MIN MAX UNIT
Input voltage range on VIN(2) –0.3 7 V
Voltage range on EN, MODE/DATA, DEF_1 –0.3 VIN +0.3, ≤ 7 V
current into MODE/DATA ≤ 0.5 mA
Voltage on SW1, SW2 –0.3 7 V
Voltage on ADJ2, FB1 –0.3 VIN +0.3, ≤ 7 V
TJ(max) Maximum operating junction temperature 150 °C
TA Operating ambient temperature range –40 85 °C
(1) Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under recommended operating conditions is not implied. Exposure to absolute–maximum–rated conditions for extended periods may affect device reliability.
(2) All voltage values are with respect to network ground terminal.

7.2 Handling Ratings

MIN MAX UNIT
Tstg Storage temperature range –65 150 °C
V(ESD) Electrostatic discharge(3) Human body model (HBM), per ANSI/ESDA/JEDEC JS-001, all pins(1) 1 kV
Charged device model (CDM), per JEDEC specification JESD22-C101, all pins(2) 0.5
Machine model 200 V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.
(3) The human body model is a 100pF capacitor discharged through a 1.5kΩ resistor into each pin. The machine model is a 200pF capacitor discharged directly into each pin.

7.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)
MIN NOM MAX UNIT
VIN Supply voltage 2.5 6 V
VOUT Output voltage range for adjustable voltage 0.6 VIN V
TA Operating ambient temperature -40 85 °C
TJ Operating junction temperature -40 125 °C

7.4 Thermal Information

THERMAL METRIC(1) TPS6240x UNIT
VSON
10 PINS
RθJA Junction-to-ambient thermal resistance 45.9 °C/W
RθJC(top) Junction-to-case (top) thermal resistance 64.3
RθJB Junction-to-board thermal resistance 20.4
ψJT Junction-to-top characterization parameter 1.3
ψJB Junction-to-board characterization parameter 20.6
RθJC(bot) Junction-to-case (bottom) thermal resistance 2.8
(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.

7.5 Electrical Characteristics

VIN = 3.6V, VOUT = 1.8V, EN = VIN, MODE = GND, L = 2.2μH, COUT = 20μF, TA = –40°C to 85°C typical values are at
TA = 25°C (unless otherwise noted)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
SUPPLY CURRENT
VIN Input voltage range 2.5 6.0 V
IQ Operating quiescent current One converter, IOUT = 0mA. PFM mode enabled (Mode = 0) device not switching,
EN1 = 1 OR EN2 = 1
19 29 μA
Two converter, IOUT = 0mA. PFM mode enabled (Mode = 0) device not switching,
EN1 = 1 AND EN2 = 1
32 48 μA
IOUT = 0mA, MODE/DATA = GND, for one converter, VOUT 1.575V(1) 23 μA
IOUT = 0mA, MODE/DATA = VIN, for one converter, VOUT 1.575V (1) 3.6 mA
ISD Shutdown current EN1, EN2 = GND, VIN = 3.6V(2) 1.2 3 μA
EN1, EN2 = GND, VIN ramped from 0V to 3.6V(3) 0.1 1
VUVLO Undervoltage lockout threshold Falling 1.5 2.35 V
Rising 2.4
ENABLE EN1, EN2
VIH High-level input voltage range, EN1, EN2 1.2 VIN V
VIL Low-level input voltage range, EN1, EN2 0 0.4 V
IIN Input bias current, EN1, EN2 EN1, EN2 = GND or VIN 0.05 1.0 μA
DEF_1 INPUT
VDEF_1H DEF_1 high level input voltage range VOUT1 = fixed output voltage option 0.9 VIN V
VDEF_1L DEF_1 low level input voltage range VOUT1 = fixed output voltage option 0 0.4 V
IIN Input bias current DEF_1 DEF_1 GND or VIN 0.01 1.0 μA
MODE/DATA
VIH High-level input voltage range, MODE/DATA 1.2 VIN V
VIL Low-level input voltage range, MODE/DATA 0 0.4 V
IIN Input bias current, MODE/DATA MODE/DATA = GND or VIN 0.01 1.0 μA
VOH Acknowledge output voltage high Open drain, via external pullup resistor VIN V
VOL Acknowledge output voltage low Open drain, sink current 500μA 0 0.4 V
INTERFACE TIMING
tStart Start time 2 μs
tH_LB High time low bit, logic 0 detection Signal level on MODE/DATA pin is > 1.2V 2 200 μs
tL_LB Low time low bit, logic 0 detection Signal level on MODE/DATA pin < 0.4V 2x tH_LB 400 μs
tL_HB Low time high bit, logic 1 detection Signal level on MODE/DATA pin < 0.4V 2 200 μs
tH_HB High time high bit, logic 1 detection Signal level on MODE/DATA pin is > 1.2V 2x tL_HB 400 μs
TEOS End of Stream TEOS 2 μs
tACKN Duration of acknowledge condition (MODE/DATE line pulled low by the device) VIN 2.5V to 6V 400 520 μs
tvalACK Acknowledge valid time 2 μs
ttimeout Timeout for entering power save mode MODE/DATA Pin changes from high to low 520 μs
POWER SWITCH
RDS(ON) P-Channel MOSFET on-resistance, Converter 1,2 VIN = VGS = 3.6V 280 620
ILK_PMOS P-Channel leakage current VDS = 6.0V 1 μA
RDS(ON) N-Channel MOSFET on-resistance Converter 1,2 VIN = VGS = 3.6V 200 450
ILK_SW1/SW2 Leakage current into SW1/SW2 pin Includes N-Chanel leakage current,
VIN = open, VSW = 6.0V, EN = GND(4)
6 7.5 μA
ILIMF Forward Current Limit PMOS and NMOS OUTPUT 1 2.5V ≤ VIN ≤ 6.0V 0.68 0.8 0.92 A
OUTPUT 2 0.85 1.0 1.15
TSD Thermal shutdown Increasing junction temperature 150 °C
Thermal shutdown hysteresis Decreasing junction temperature 20 °C
OSCILLATOR
fSW Oscillator frequency 2.5V ≤ VIN ≤ 6V 2.0 2.25 2.5 MHz
OUTPUT
VOUT Adjustable output voltage range 0.6 VIN V
Vref Reference voltage 600 mV
VOUT (PFM) DC output voltage accuracy adjustable and fixed output voltage(7) Voltage positioning active,
MODE/DATA = GND,
device operating in PFM mode,
VIN = 2.5V to 5.0V (5)(8)
–1.5% 1.01 VOUT 2.5%
VOUT(PWM) MODE/DATA = GND;
device operating in PWM Mode,
VIN = 2.5V to 6.0V(8)
–1% 0% 1%
VIN = 2.5V to 6.0V, Mode/Data = VIN ,
Fixed PWM operation,
0mA < IOUT1 < 400mA ; 0mA < IOUT2 < 600mA(6)
–1% 0% 1%
DC output voltage load regulation PWM operation mode 0.5 %/A
tStart up Start-up time Activation time to start switching(9) 170 μs
tRamp VOUT Ramp UP time Time to ramp from 5% to 95% of VOUT 750 μs
(1) Device is switching with no load on the output, L = 3.3μH, value includes losses of the coil
(2) These values are valid after the device has been already enabled one time (EN1 or EN2 = high) and supply voltage VIN has not powered down.
(3) These values are valid when the device is disabled (EN1 and EN2 low) and supply voltage VIN is powered up. The values remain valid until the device has been enabled first time (EN1 or EN2 = high). After first enable, Note 3 becomes valid.
(4) On pins SW1 and SW2 an internal resistor of 1MΩ is connected to GND.
(5) Configuration L typ 2.2μH, COUT typ 20μF, see parameter measurement information, the output voltage ripple in PFM mode depends on the effective capacitance of the output capacitor, larger output capacitors lead to tighter output voltage tolerance.
(6) For VOUT > 2V, VIN min = VOUT +0.5V
(7) Output voltage specification does not include tolerance of external voltage programming resistors
(8) In Power Save Mode, PWM operation is typically entered at IPSM = VIN/32Ω.
(9) This time is valid if one converter turns from shutdown mode (EN2 = 0) to active mode (EN2 = 1) AND the other converter is already enabled (e.g., EN1 = 1). In case both converters are turned from shutdown mode (EN1 and EN2 = low) to active mode (EN1 and/or EN2=1) a value of typ 80 μs for ramp up of internal circuits needs to be added. After tStart the converter starts switching and ramps VOUT.

7.6 Typical Characteristics

fosc_vi_lvs681.gif
A.
Figure 1. FOSC vs VIN
idd_vi2_lvs681.gif
A.
Figure 3. Iq For Both Converters, Not Switching
nmos_vi_lvs681.gif
A.
Figure 5. RDSON NMOS vs VIN
idd_vi_lvs681.gif
A.
Figure 2. Iq For One Converter, Not Switching
rdson_vi_lvs681.gif
A.
Figure 4. RDSON PMOS vs VIN