DLPA027B January   2024  – April 2024 DLP500YX , DLP5500 , DLP6500FLQ , DLP6500FYE , DLP650LNIR , DLP670S , DLP7000 , DLP7000UV , DLP9000 , DLP9000X , DLP9000XUV , DLP9500 , DLP9500UV

 

  1.   1
  2.   Abstract
  3.   Trademarks
  4. 1Heating of a DMD Micromirror
    1. 1.1 Mirror Surface to Bulk Mirror Delta (ΔTMIRROR_SURFACE-TO-BULK_MIRROR)
    2. 1.2 Bulk Mirror to Silicon Delta (ΔTBULK_MIRROR-TO-SILICON)
    3. 1.3 Silicon to Ceramic Delta (ΔTSILICON-TO-CERAMIC)
  5. 2Calculating Mirror Surface Temperature With Pulsed Optical Sources
    1. 2.1 Mirror Surface to Bulk Mirror Delta (ΔTMIRROR_SURFACE-TO-BULK_MIRROR)
    2. 2.2 Bulk Mirror to Silicon Delta (ΔTBULK_MIRROR-TO-SILICON)
    3. 2.3 Silicon to Ceramic Delta (ΔTSILICON-TO-CERAMIC)
    4. 2.4 Calculating Mirror Surface to Ceramic Delta (ΔTMIRROR_SURFACE-TO-CERAMIC)
  6. 3Sample Calculations
  7. 4Summary
  8. 5References
  9. 6Revision History

Silicon to Ceramic Delta (ΔTSILICON-TO-CERAMIC)

The ceramic to silicon temperature rise is calculated in a similar manner to how a standard semiconductor device die temperature is calculated. The thermal resistance of the DMD ceramic package is multiplied by the total DMD power at the silicon and then added to the temperature measured at TCERAMIC. An example of this calculation is shown in Section 2.3.