JAJSTH6M July   1999  – March 2024 SN65LVDS1 , SN65LVDS2 , SN65LVDT2

PRODUCTION DATA  

  1.   1
  2. 特長
  3. アプリケーション
  4. 概要
  5. デバイスのオプション
  6. ピン構成および機能
  7. 仕様
    1. 6.1 絶対最大定格
    2. 6.2 ESD 定格
    3. 6.3 推奨動作条件
    4. 6.4 熱に関する情報
    5. 6.5 ドライバの電気的特性
    6. 6.6 レシーバの電気的特性
    7. 6.7 ドライバのスイッチング特性
    8. 6.8 レシーバのスイッチング特性
    9. 6.9 代表的特性
  8. パラメータ測定情報
  9. 詳細説明
    1. 8.1 概要
    2. 8.2 機能ブロック図
    3. 8.3 機能説明
      1. 8.3.1 SN65LVDS1 の特長
        1. 8.3.1.1 ドライバ出力電圧とパワーオン リセット
        2. 8.3.1.2 ドライバのオフセット
        3. 8.3.1.3 5V 入力許容範囲
        4. 8.3.1.4 NC ピン
        5. 8.3.1.5 ドライバの等価回路図
      2. 8.3.2 SN65LVDS2 および SN65LVDT2 の特長
        1. 8.3.2.1 レシーバの開路フェイルセーフ
        2. 8.3.2.2 レシーバ出力電圧とパワーオン リセット
        3. 8.3.2.3 同相範囲と供給電圧との関係
        4. 8.3.2.4 汎用コンパレータ
        5. 8.3.2.5 レシーバの等価回路図
        6. 8.3.2.6 NC ピン
    4. 8.4 デバイスの機能モード
      1. 8.4.1 VCC < 1.5V での動作
      2. 8.4.2 1.5V ≤ VCC < 2.4Vでの動作
      3. 8.4.3 2.4V ≤ VCC < 3.6Vでの動作
      4. 8.4.4 SN65LVDS1 の真理値表
      5. 8.4.5 SN65LVDS2 と SN65LVDT2 の真理値表
  10. アプリケーションと実装
    1. 9.1 アプリケーション情報
    2. 9.2 代表的なアプリケーション
      1. 9.2.1 ポイント ツー ポイント通信
        1. 9.2.1.1 設計要件
        2. 9.2.1.2 詳細な設計手順
          1. 9.2.1.2.1  ドライバ電源電圧
          2. 9.2.1.2.2  ドライバ バイパス容量
          3. 9.2.1.2.3  ドライバの入力電圧
          4. 9.2.1.2.4  ドライバ出力電圧
          5. 9.2.1.2.5  メディアの相互接続
          6. 9.2.1.2.6  PCB の伝送ライン
          7. 9.2.1.2.7  終端抵抗
          8. 9.2.1.2.8  ドライバ NC ピン
          9. 9.2.1.2.9  レシーバ電源電圧
          10. 9.2.1.2.10 レシーバ バイパス容量
          11. 9.2.1.2.11 レシーバの入力同相範囲
          12. 9.2.1.2.12 レシーバの入力信号
          13. 9.2.1.2.13 レシーバ出力信号
          14. 9.2.1.2.14 レシーバ NC ピン
      2. 9.2.2 アプリケーション曲線
      3. 9.2.3 マルチドロップ通信
        1. 9.2.3.1 設計要件
        2. 9.2.3.2 詳細な設計手順
          1. 9.2.3.2.1 メディアの相互接続
        3. 9.2.3.3 アプリケーション曲線
  11. 10電源に関する推奨事項
  12. 11レイアウト
    1. 11.1 レイアウトのガイドライン
      1. 11.1.1 マイクロストリップとストリップラインのトポロジ
      2. 11.1.2 誘電体の種類と基板構造
      3. 11.1.3 推奨されるスタック レイアウト
      4. 11.1.4 パターン間の分離
      5. 11.1.5 クロストークおよびグランド バウンスの最小化
      6. 11.1.6 デカップリング
    2. 11.2 レイアウト例
  13. 12デバイスおよびドキュメントのサポート
    1. 12.1 デバイス サポート
      1. 12.1.1 その他の LVDS 製品
    2. 12.2 サード・パーティ製品に関する免責事項
    3. 12.3 ドキュメントのサポート
      1. 12.3.1 関連情報
    4. 12.4 ドキュメントの更新通知を受け取る方法
    5. 12.5 サポート・リソース
    6. 12.6 商標
    7. 12.7 静電気放電に関する注意事項
    8. 12.8 用語集
  14. 13改訂履歴
  15. 14メカニカル、パッケージ、および注文情報

レイアウト例

クロストークの可能性を最小限に抑えるため、個々のパターンの幅の少なくとも 2 倍または 3 倍の間隔で、シングルエンドのパターンと差動ペアを分離する必要があります。立ち上がり時間または立ち下がり時間の波長より短い間隔で並列に配線されるシングルエンドのパターンでは、通常、クロストークは無視できるほど小さくなります。クロストークを低減するため、長い並列配線の場合は信号路間の間隔を増やします。図 11-8 に示すように、基板の面積が限られている場合、配線パターン レイアウトを交互に配置することにはメリットがあります。

SN65LVDS1 SN65LVDS2 SN65LVDT2 交互パターンのレイアウト図 11-8 交互パターンのレイアウト

この構成では、異なる層に交互の信号パターンが配置されるため、パターン間の水平間隔は個々のパターンの幅の 2 倍または 3 倍未満にできます。グランド信号路の連続性を確保するため、図 11-9 に示すように、すべての信号ビアに隣接するグランド ビアを配置することを推奨します。ビアを使用すると追加の容量が発生することに注意してください。たとえば、代表的なビアには、FR4 で 1/2pF から 1pF への容量増加効果があります。

SN65LVDS1 SN65LVDS2 SN65LVDT2 グランド ビアの位置 (側面図)図 11-9 グランド ビアの位置 (側面図)

デバイスのグランド ピンを PCB のグランド プレーンに短く低インピーダンスで接続すると、グランド バウンスが低減されます。グランド プレーンの穴や切り欠きがリターン電流のループ面積を増やすような不連続性を形成する場合、電流のリターン パスに悪影響を及ぼす可能性があります。

EMI の問題を最小限に抑えるため、パターンの下に不連続が生じることを避け (穴、スリットなど)、パターンをできるだけ短くすることを推奨します。機能を混在させるのではなく、類似の機能を同じ領域にすべて配置してボードを適切にゾーニングすることは、外部からの影響の受けやすさに関する問題を低減するのに役立ちます。