SPRACC0A November   2017  – November 2020 TMS320F28075 , TMS320F28075-Q1 , TMS320F28076 , TMS320F28374D , TMS320F28374S , TMS320F28375D , TMS320F28375S , TMS320F28375S-Q1 , TMS320F28376D , TMS320F28376S , TMS320F28377D , TMS320F28377D-EP , TMS320F28377D-Q1 , TMS320F28377S , TMS320F28377S-Q1 , TMS320F28378D , TMS320F28378S , TMS320F28379D , TMS320F28379D-Q1

 

  1.   Trademarks
  2. Introduction and Scope
  3. SRAM Bit Array
  4. Sources of SRAM Failures
    1. 3.1 Manufacturing Defects
      1. 3.1.1 Time Zero Fails
      2. 3.1.2 Latent Fails
    2. 3.2 Circuit Drift With Usage
    3. 3.3 Circuit Overstress
    4. 3.4 Soft Errors
      1. 3.4.1 Radioactive Events
      2. 3.4.2 Dynamic Voltage Events
      3. 3.4.3 Summary of Error Sources
  5. Methods for Managing Memory Failures in Electronic Systems
    1. 4.1 Start-Up Testing
    2. 4.2 In-System Testing
    3. 4.3 Parity Detection
    4. 4.4 Error Detection and Correction (EDAC)
    5. 4.5 Redundancy
  6. Comparisons and Conclusions
  7. C2000 Memory Types Example
    1. 6.1 TMS320F2837xD
  8. Memory Types
    1. 7.1 Dedicated RAM (Mx and Dx RAM)
    2. 7.2 Local Shared RAM (LSx RAM)
    3. 7.3 Global Shared RAM (GSx RAM)
    4. 7.4 CPU Message RAM (CPU MSGRAM)
    5. 7.5 CLA Message RAM (CLA MSGRAM)
  9. Summary
  10. References
  11. 10Revision History

Sources of SRAM Failures

This section summarizes a number of sources for SRAM failures from the perspective of a system designer or integrator.