DLPA027B January   2024  – April 2024 DLP500YX , DLP5500 , DLP6500FLQ , DLP6500FYE , DLP650LNIR , DLP670S , DLP7000 , DLP7000UV , DLP9000 , DLP9000X , DLP9000XUV , DLP9500 , DLP9500UV

 

  1.   1
  2.   Abstract
  3.   Trademarks
  4. 1Heating of a DMD Micromirror
    1. 1.1 Mirror Surface to Bulk Mirror Delta (ΔTMIRROR_SURFACE-TO-BULK_MIRROR)
    2. 1.2 Bulk Mirror to Silicon Delta (ΔTBULK_MIRROR-TO-SILICON)
    3. 1.3 Silicon to Ceramic Delta (ΔTSILICON-TO-CERAMIC)
  5. 2Calculating Mirror Surface Temperature With Pulsed Optical Sources
    1. 2.1 Mirror Surface to Bulk Mirror Delta (ΔTMIRROR_SURFACE-TO-BULK_MIRROR)
    2. 2.2 Bulk Mirror to Silicon Delta (ΔTBULK_MIRROR-TO-SILICON)
    3. 2.3 Silicon to Ceramic Delta (ΔTSILICON-TO-CERAMIC)
    4. 2.4 Calculating Mirror Surface to Ceramic Delta (ΔTMIRROR_SURFACE-TO-CERAMIC)
  6. 3Sample Calculations
  7. 4Summary
  8. 5References
  9. 6Revision History

Summary

This application note demonstrates a method to calculate temperature rise of a DMD mirror when illuminated with a pulsed optical source. The tables and equations allow calculation of this temperature rise over a wide range of operating conditions allowing the determination of safe optical power operating conditions for the DMD. The relationship between the pulse duration and the thermal time constant of the mirror is critical to determining the bulk mirror temperature, while the mirror surface temperature rise above bulk is only a function of incident power density and pulse duration.