GERA012A December   2023  – January 2024 AM2631 , AM2631-Q1 , AM2632 , AM2632-Q1 , AM2634 , AM2634-Q1 , AM263P4 , AM263P4-Q1 , AMC1303M2520 , AMC1305L25 , AMC1306M25 , TMS320F280033 , TMS320F280034 , TMS320F280034-Q1 , TMS320F280036-Q1 , TMS320F280036C-Q1 , TMS320F280037 , TMS320F280037-Q1 , TMS320F280037C , TMS320F280037C-Q1 , TMS320F280038-Q1 , TMS320F280038C-Q1 , TMS320F280039 , TMS320F280039-Q1 , TMS320F280039C , TMS320F280039C-Q1 , TMS320F280040-Q1 , TMS320F280040C-Q1 , TMS320F280041 , TMS320F280041-Q1 , TMS320F280041C , TMS320F280041C-Q1 , TMS320F280045 , TMS320F280048-Q1 , TMS320F280048C-Q1 , TMS320F280049 , TMS320F280049-Q1 , TMS320F280049C , TMS320F280049C-Q1 , TMS320F28075 , TMS320F28075-Q1 , TMS320F28076 , TMS320F28374D , TMS320F28374S , TMS320F28375D , TMS320F28375S , TMS320F28375S-Q1 , TMS320F28376D , TMS320F28376S , TMS320F28377D , TMS320F28377D-Q1 , TMS320F28377S , TMS320F28377S-Q1 , TMS320F28378D , TMS320F28378S , TMS320F28379D , TMS320F28379D-Q1 , TMS320F28379S , TMS320F28384D , TMS320F28384D-Q1 , TMS320F28384S , TMS320F28384S-Q1 , TMS320F28386D , TMS320F28386D-Q1 , TMS320F28386S , TMS320F28386S-Q1 , TMS320F28388D , TMS320F28388S , TMS320F28P650DH , TMS320F28P650DK , TMS320F28P650SH , TMS320F28P650SK , TMS320F28P659DH-Q1 , TMS320F28P659DK-Q1 , TMS320F28P659SH-Q1

 

  1.   1
  2.   Zusammenfassung
  3.   Marken
  4. 1Einführung
  5. 2Design-Herausforderung durch Timing-Spezifikationen für digitale Schnittstellen
  6. 3Designansatz mit Taktflankenverzögerungskompensation
    1. 3.1 Taktsignalkompensation mit Softwarekonfigurierbarer Phasenverzögerung
    2. 3.2 Taktsignalkompensation mit Hardware-konfigurierbarer Phasenverzögerung
    3. 3.3 Taktsignalkompensation durch Taktrückkehr
    4. 3.4 Taktsignalkompensation durch Taktumkehr an der MCU
  7. 4Test und Validierung
    1. 4.1 Prüfausrüstung und Software
    2. 4.2 Testen der Taktsignalkompensation mit softwarekonfigurierbarer Phasenverzögerung
      1. 4.2.1 Testeinrichtung
      2. 4.2.2 Test-Messergebnisse
    3. 4.3 Testen der Taktsignalkompensation durch Taktumkehr an der MCU
      1. 4.3.1 Testeinrichtung
      2. 4.3.2 Test-Messergebnisse
        1. 4.3.2.1 Testergebnis – Keine Taktumkehr des Takteingangs bei GPIO123
        2. 4.3.2.2 Testergebnis – Taktumkehr des Takteingangs bei GPIO123
    4. 4.4 Validierung des Timings digitaler Schnittstellen durch Berechnungstool
      1. 4.4.1 Digitale Schnittstelle ohne Kompensationsmethode
      2. 4.4.2 Häufig verwendete Methode – Reduzierung der Taktfrequenz
      3. 4.4.3 Taktflankenkompensation Mit Software-konfigurierbarer Phasenverzögerung
  8. 5Fazit
  9. 6Quellennachweise
  10. 7Revision History

Zusammenfassung

Isolierte Delta-Sigma-Modulatoren wie der AMC1306M25 mit digitaler Hochgeschwindigkeitsschnittstelle werden häufig für eine genaue, latenzarme und rauschunempfindlichkeit Shunt-basierte Phasenstrommessung in Servoantrieben und Robotik-Anwendungen verwendet. Insbesondere bei höheren Taktfrequenzen sind Routing, Terminierung und die Einhaltung der Einrichtungs- und Hold-Timings der jeweiligen MCU für einen zuverlässigen Betrieb von entscheidender Bedeutung. Eine häufig verwendete Methode und ein Kompromiss zur Erfüllung der MCU-Timing-Anforderungen besteht in der Reduzierung der Modulator-Taktfrequenz, wodurch auch die Datenausgangsrate reduziert wird. Dieser Anwendungshinweis enthält weitere speziell für Taktkantenkompensationsmethoden entwickelte Anwendungen, um die Einrichtungs- und Timing-Anforderungen bis zur maximalen Taktrate des Modulators zu erfüllen. Dadurch kann das System mit der maximalen Datenrate arbeiten. Der Anwendungshinweis skizziert Optionen für die Taktkantenkompensation und zeigt Beispielmessungen mit den isolierten Modulatoren AMC130x von TI, die an C2000™- und Sitara™-MCUs angeschlossen sind. Zusätzlich wird ein Berechnungstool bereitgestellt, um das Timing der digitalen Schnittstelle zu validieren.