SBAA532A February   2022  – March 2024 ADS1119 , ADS1120 , ADS1120-Q1 , ADS112C04 , ADS112U04 , ADS1130 , ADS1131 , ADS114S06 , ADS114S06B , ADS114S08 , ADS114S08B , ADS1158 , ADS1219 , ADS1220 , ADS122C04 , ADS122U04 , ADS1230 , ADS1231 , ADS1232 , ADS1234 , ADS1235 , ADS1235-Q1 , ADS124S06 , ADS124S08 , ADS1250 , ADS1251 , ADS1252 , ADS1253 , ADS1254 , ADS1255 , ADS1256 , ADS1257 , ADS1258 , ADS1258-EP , ADS1259 , ADS1259-Q1 , ADS125H01 , ADS125H02 , ADS1260 , ADS1260-Q1 , ADS1261 , ADS1261-Q1 , ADS1262 , ADS1263 , ADS127L01 , ADS130E08 , ADS131A02 , ADS131A04 , ADS131E04 , ADS131E06 , ADS131E08 , ADS131E08S , ADS131M02 , ADS131M03 , ADS131M04 , ADS131M06 , ADS131M08

 

  1.   1
  2.   Abstract
  3.   Trademarks
  4. 1Bridge Overview
  5. 2Bridge Construction
    1. 2.1 Active Elements in Bridge Topologies
      1. 2.1.1 Bridge With One Active Element
        1. 2.1.1.1 Reducing Non-Linearity in a Bridge With One Active Element Using Current Excitation
      2. 2.1.2 Bridge With Two Active Elements in Opposite Branches
        1. 2.1.2.1 Eliminating Non-Linearity in a Bridge With Two Active Elements in Opposite Branches Using Current Excitation
      3. 2.1.3 Bridge With Two Active Elements in the Same Branch
      4. 2.1.4 Bridge With Four Active Elements
    2. 2.2 Strain Gauge and Bridge Construction
  6. 3Bridge Connections
    1. 3.1 Ratiometric Measurements
    2. 3.2 Four-Wire Bridge
    3. 3.3 Six-Wire Bridge
  7. 4Electrical Characteristics of Bridge Measurements
    1. 4.1 Bridge Sensitivity
    2. 4.2 Bridge Resistance
    3. 4.3 Output Common-Mode Voltage
    4. 4.4 Offset Voltage
    5. 4.5 Full-Scale Error
    6. 4.6 Non-Linearity Error and Hysteresis
    7. 4.7 Drift
    8. 4.8 Creep and Creep Recovery
  8. 5Signal Chain Design Considerations
    1. 5.1 Amplification
      1. 5.1.1 Instrumentation Amplifier
        1. 5.1.1.1 INA Architecture and Operation
        2. 5.1.1.2 INA Error Sources
      2. 5.1.2 Integrated PGA
        1. 5.1.2.1 Integrated PGA Architecture and Operation
        2. 5.1.2.2 Benefits of Using an Integrated PGA
    2. 5.2 Noise
      1. 5.2.1 Noise in an ADC Data Sheet
      2. 5.2.2 Calculating NFC for a Bridge Measurement System
    3. 5.3 Channel Scan Time and Signal Bandwidth
      1. 5.3.1 Noise Performance
      2. 5.3.2 ADC Conversion Latency
      3. 5.3.3 Digital Filter Frequency Response
    4. 5.4 AC Excitation
    5. 5.5 Calibration
      1. 5.5.1 Offset Calibration
      2. 5.5.2 Gain Calibration
      3. 5.5.3 Calibration Example
  9. 6Bridge Measurement Circuits
    1. 6.1 Four-Wire Resistive Bridge Measurement with a Ratiometric Reference and a Unipolar, Low-Voltage (≤5 V) Excitation Source
      1. 6.1.1 Schematic
      2. 6.1.2 Pros and Cons
      3. 6.1.3 Parameters and Variables
      4. 6.1.4 Design Notes
      5. 6.1.5 Measurement Conversion
      6. 6.1.6 Generic Register Settings
    2. 6.2 Six-Wire Resistive Bridge Measurement With a Ratiometric Reference and a Unipolar, Low-Voltage (≤ 5 V) Excitation Source
      1. 6.2.1 Schematic
      2. 6.2.2 Pros and Cons
      3. 6.2.3 Parameters and Variables
      4. 6.2.4 Design Notes
      5. 6.2.5 Measurement Conversion
      6. 6.2.6 Generic Register Settings
    3. 6.3 Four-Wire Resistive Bridge Measurement With a Pseudo-Ratiometric Reference and a Unipolar, High-Voltage (> 5 V) Excitation Source
      1. 6.3.1 Schematic
      2. 6.3.2 Pros and Cons
      3. 6.3.3 Parameters and Variables
      4. 6.3.4 Design Notes
      5. 6.3.5 Measurement Conversion
      6. 6.3.6 Generic Register Settings
    4. 6.4 Four-Wire Resistive Bridge Measurement with a Pseudo-Ratiometric Reference and Asymmetric, High-Voltage (> 5 V) Excitation Source
      1. 6.4.1 Schematic
      2. 6.4.2 Pros and Cons
      3. 6.4.3 Parameters and Variables
      4. 6.4.4 Design Notes
      5. 6.4.5 Measurement Conversion
      6. 6.4.6 Generic Register Settings
    5. 6.5 Four-Wire Resistive Bridge Measurement With a Ratiometric Reference and Current Excitation
      1. 6.5.1 Schematic
      2. 6.5.2 Pros and Cons
      3. 6.5.3 Parameters and Variables
      4. 6.5.4 Design Notes
      5. 6.5.5 Measurement Conversion
      6. 6.5.6 Generic Register Settings
    6. 6.6 Measuring Multiple Four-Wire Resistive Bridges in Series with a Pseudo-Ratiometric Reference and a Unipolar, Low-Voltage (≤5V) Excitation Source
      1. 6.6.1 Schematic
      2. 6.6.2 Pros and Cons
      3. 6.6.3 Parameters and Variables
      4. 6.6.4 Design Notes
      5. 6.6.5 Measurement Conversion
      6. 6.6.6 Generic Register Settings
    7. 6.7 Measuring Multiple Four-Wire Resistive Bridges in Parallel Using a Single-Channel ADC With a Ratiometric Reference and a Unipolar, Low-Voltage (≤ 5 V) Excitation Source
      1. 6.7.1 Schematic
      2. 6.7.2 Pros and Cons
      3. 6.7.3 Parameters and Variables
      4. 6.7.4 Design Notes
      5. 6.7.5 Measurement Conversion
      6. 6.7.6 Generic Register Settings
    8. 6.8 Measuring Multiple Four-Wire Resistive Bridges in Parallel Using a Multichannel ADC With a Ratiometric Reference and a Unipolar, Low-Voltage (≤ 5 V) Excitation Source
      1. 6.8.1 Schematic
      2. 6.8.2 Pros and Cons
      3. 6.8.3 Parameters and Variables
      4. 6.8.4 Design Notes
      5. 6.8.5 Measurement Conversion
      6. 6.8.6 Generic Register Settings
  10. 7Summary
  11. 8Revision History

Bridge With One Active Element

The simplest bridge topology has a single active resistive element while the remaining three elements are static resistances, as shown in Figure 2-1. This is known as a quarter bridge.

GUID-20211110-SS0I-HCWL-6TLD-MW1P9DDRKW1K-low.svg Figure 2-1 Bridge With One Active Element (Quarter Bridge)

Equation 3 calculates VOUT between the two voltages dividers in Figure 2-1:

Equation 3. VOUT= VEXCITATIONR+R2R+R-VEXCITATIONR2R

Collecting like terms and simplifying Equation 3 yields Equation 4:

Equation 4. VOUT= VEXCITATIONR+R-2R+R/22R+R= VEXCITATION2R2R+R

Equation 4 shows that VOUT is proportional to VEXCITATION and ΔR when ΔR is much smaller than R (ΔR << R). This relationship can be confirmed by plotting VOUT against the change in ΔR from zero to full-scale (ΔRFS). Figure 2-2 shows this plot when R = 1 kΩ, VEXCITATION = 10 V, and ΔRFS = 1 Ω.

GUID-20211110-SS0I-CSN8-7FHR-7C384TCTKC4C-low.svg Figure 2-2 Quarter Bridge Differential Output (R = 1 kΩ, VEXCITATION = 10 V, ΔRFS = 1 Ω)

Though not obvious from Figure 2-2, this bridge topology has a small inherent non-linearity because of the 2R + ΔR term in the denominator in Equation 4. Taking the endpoints of the plot in Figure 2-2 and removing the endpoint slope from the curve reveals the non-linearity of this bridge topology. Figure 2-3 illustrates this phenomenon by plotting non-linearity as a percent of the full-scale.

GUID-20211110-SS0I-D7JP-T7PH-KWJDNCFLR6CW-low.svg Figure 2-3 Quarter Bridge Non-Linearity

The non-linearity shown in Figure 2-3 directly results from the topology of the bridge with one active element, and does not include any non-linearity in the single active resistive element.