SBAA532A February   2022  – March 2024 ADS1119 , ADS1120 , ADS1120-Q1 , ADS112C04 , ADS112U04 , ADS1130 , ADS1131 , ADS114S06 , ADS114S06B , ADS114S08 , ADS114S08B , ADS1158 , ADS1219 , ADS1220 , ADS122C04 , ADS122U04 , ADS1230 , ADS1231 , ADS1232 , ADS1234 , ADS1235 , ADS1235-Q1 , ADS124S06 , ADS124S08 , ADS1250 , ADS1251 , ADS1252 , ADS1253 , ADS1254 , ADS1255 , ADS1256 , ADS1257 , ADS1258 , ADS1258-EP , ADS1259 , ADS1259-Q1 , ADS125H01 , ADS125H02 , ADS1260 , ADS1260-Q1 , ADS1261 , ADS1261-Q1 , ADS1262 , ADS1263 , ADS127L01 , ADS130E08 , ADS131A02 , ADS131A04 , ADS131E04 , ADS131E06 , ADS131E08 , ADS131E08S , ADS131M02 , ADS131M03 , ADS131M04 , ADS131M06 , ADS131M08

 

  1.   1
  2.   Abstract
  3.   Trademarks
  4. 1Bridge Overview
  5. 2Bridge Construction
    1. 2.1 Active Elements in Bridge Topologies
      1. 2.1.1 Bridge With One Active Element
        1. 2.1.1.1 Reducing Non-Linearity in a Bridge With One Active Element Using Current Excitation
      2. 2.1.2 Bridge With Two Active Elements in Opposite Branches
        1. 2.1.2.1 Eliminating Non-Linearity in a Bridge With Two Active Elements in Opposite Branches Using Current Excitation
      3. 2.1.3 Bridge With Two Active Elements in the Same Branch
      4. 2.1.4 Bridge With Four Active Elements
    2. 2.2 Strain Gauge and Bridge Construction
  6. 3Bridge Connections
    1. 3.1 Ratiometric Measurements
    2. 3.2 Four-Wire Bridge
    3. 3.3 Six-Wire Bridge
  7. 4Electrical Characteristics of Bridge Measurements
    1. 4.1 Bridge Sensitivity
    2. 4.2 Bridge Resistance
    3. 4.3 Output Common-Mode Voltage
    4. 4.4 Offset Voltage
    5. 4.5 Full-Scale Error
    6. 4.6 Non-Linearity Error and Hysteresis
    7. 4.7 Drift
    8. 4.8 Creep and Creep Recovery
  8. 5Signal Chain Design Considerations
    1. 5.1 Amplification
      1. 5.1.1 Instrumentation Amplifier
        1. 5.1.1.1 INA Architecture and Operation
        2. 5.1.1.2 INA Error Sources
      2. 5.1.2 Integrated PGA
        1. 5.1.2.1 Integrated PGA Architecture and Operation
        2. 5.1.2.2 Benefits of Using an Integrated PGA
    2. 5.2 Noise
      1. 5.2.1 Noise in an ADC Data Sheet
      2. 5.2.2 Calculating NFC for a Bridge Measurement System
    3. 5.3 Channel Scan Time and Signal Bandwidth
      1. 5.3.1 Noise Performance
      2. 5.3.2 ADC Conversion Latency
      3. 5.3.3 Digital Filter Frequency Response
    4. 5.4 AC Excitation
    5. 5.5 Calibration
      1. 5.5.1 Offset Calibration
      2. 5.5.2 Gain Calibration
      3. 5.5.3 Calibration Example
  9. 6Bridge Measurement Circuits
    1. 6.1 Four-Wire Resistive Bridge Measurement with a Ratiometric Reference and a Unipolar, Low-Voltage (≤5 V) Excitation Source
      1. 6.1.1 Schematic
      2. 6.1.2 Pros and Cons
      3. 6.1.3 Parameters and Variables
      4. 6.1.4 Design Notes
      5. 6.1.5 Measurement Conversion
      6. 6.1.6 Generic Register Settings
    2. 6.2 Six-Wire Resistive Bridge Measurement With a Ratiometric Reference and a Unipolar, Low-Voltage (≤ 5 V) Excitation Source
      1. 6.2.1 Schematic
      2. 6.2.2 Pros and Cons
      3. 6.2.3 Parameters and Variables
      4. 6.2.4 Design Notes
      5. 6.2.5 Measurement Conversion
      6. 6.2.6 Generic Register Settings
    3. 6.3 Four-Wire Resistive Bridge Measurement With a Pseudo-Ratiometric Reference and a Unipolar, High-Voltage (> 5 V) Excitation Source
      1. 6.3.1 Schematic
      2. 6.3.2 Pros and Cons
      3. 6.3.3 Parameters and Variables
      4. 6.3.4 Design Notes
      5. 6.3.5 Measurement Conversion
      6. 6.3.6 Generic Register Settings
    4. 6.4 Four-Wire Resistive Bridge Measurement with a Pseudo-Ratiometric Reference and Asymmetric, High-Voltage (> 5 V) Excitation Source
      1. 6.4.1 Schematic
      2. 6.4.2 Pros and Cons
      3. 6.4.3 Parameters and Variables
      4. 6.4.4 Design Notes
      5. 6.4.5 Measurement Conversion
      6. 6.4.6 Generic Register Settings
    5. 6.5 Four-Wire Resistive Bridge Measurement With a Ratiometric Reference and Current Excitation
      1. 6.5.1 Schematic
      2. 6.5.2 Pros and Cons
      3. 6.5.3 Parameters and Variables
      4. 6.5.4 Design Notes
      5. 6.5.5 Measurement Conversion
      6. 6.5.6 Generic Register Settings
    6. 6.6 Measuring Multiple Four-Wire Resistive Bridges in Series with a Pseudo-Ratiometric Reference and a Unipolar, Low-Voltage (≤5V) Excitation Source
      1. 6.6.1 Schematic
      2. 6.6.2 Pros and Cons
      3. 6.6.3 Parameters and Variables
      4. 6.6.4 Design Notes
      5. 6.6.5 Measurement Conversion
      6. 6.6.6 Generic Register Settings
    7. 6.7 Measuring Multiple Four-Wire Resistive Bridges in Parallel Using a Single-Channel ADC With a Ratiometric Reference and a Unipolar, Low-Voltage (≤ 5 V) Excitation Source
      1. 6.7.1 Schematic
      2. 6.7.2 Pros and Cons
      3. 6.7.3 Parameters and Variables
      4. 6.7.4 Design Notes
      5. 6.7.5 Measurement Conversion
      6. 6.7.6 Generic Register Settings
    8. 6.8 Measuring Multiple Four-Wire Resistive Bridges in Parallel Using a Multichannel ADC With a Ratiometric Reference and a Unipolar, Low-Voltage (≤ 5 V) Excitation Source
      1. 6.8.1 Schematic
      2. 6.8.2 Pros and Cons
      3. 6.8.3 Parameters and Variables
      4. 6.8.4 Design Notes
      5. 6.8.5 Measurement Conversion
      6. 6.8.6 Generic Register Settings
  10. 7Summary
  11. 8Revision History

Design Notes

In systems where long lead wires are used to connect the bridge to the terminal block, wire impedance can contribute a small voltage drop between the terminal block and the bridge itself. Under these circumstances, VEXCITATION+ ≠ VSENSE+ and VEXCITATION- ≠ VSENSE- in Figure 6-2. Therefore, simply shorting VEXCITATION to VREF similar to Figure 6-1 causes a voltage mismatch between the REFP and REFN pins compared the actual voltage across the bridge, resulting in a gain error. The six-wire resistive bridge accounts for this voltage drop by including two sense lines in addition to the signal and excitation leads. These additional wires route the actual voltage seen at the top and bottom of the bridge to the REFP and REFN pins on the ADC, respectively.

The unipolar excitation voltage applied to the bridge, VEXCITATION, is used as the ADC supply voltage (AVDD) but not as the ADC reference voltage, VREF. Instead, the separate sense lines result in VREF = VSENSE+ – VSENSE-, which is slightly smaller compared to VEXCITATION but still ratiometric to the input voltage, VIN. Small variations in the bridge resistance due to tension or compression cause the differential bridge output voltage to change. The PGA integrated into the ADC gains up this low-level signal to reduce system noise and utilize more of the ADC full-scale range (FSR). The ADC samples and converts this amplified voltage against VREF, which has a ratiometric relationship to VEXCITATION. The excitation source noise and drift are seen equally in both VIN and VREF in a ratiometric reference configuration, effectively removing these errors from the ADC output code.

A six-wire resistive bridge measurement with a ratiometric reference and a unipolar, low-voltage (≤ 5 V) supply requires:

  • Differential analog inputs (AINP and AINN)
  • Differential reference inputs (REFP and REFN)
  • Low-noise amplifier

First, identify the maximum differential output voltage of the bridge, VOUT(Bridge Max), using the equation from Table 6-5 and parameters from Table 6-4. This value provides the maximum output voltage possible from the bridge under normal operating conditions and corresponds to the maximum load that can be applied to the bridge, Load(Bridge Max). If the system does not use the entire output range of the bridge, VOUT(System Max) defines the maximum differential output signal that is applied to a specific system and Load(System Max) is the corresponding maximum load. For example, if VOUT(Bridge Max) corresponds to Load(Bridge Max) = 5 kg, but the system specifications only require that Load(System Max) = 2.5 kg, then VOUT(System Max) is given by Equation 42:

Equation 42. VOUT(System Max) = VOUT(Bridge Max) • (2.5 kg / 5 kg) = VOUT(Bridge Max) / 2

Note that if Load(System Max) = Load(Bridge Max), then VOUT(System Max) = VOUT(Bridge Max).

After VOUT(System Max) has been determined, choose the corresponding gain value for the ADC PGA. The amplifier gain should be the largest allowable value that is still less than the ADC FSR. In some cases it is not possible to choose an amplifier gain that uses the entire ADC FSR. While this is often an acceptable tradeoff between resolution and ease-of-use, care should be taken to ensure that all system requirements are still met when the ADC FSR cannot be maximized.

Next, ensure that the bridge common-mode voltage, VCM(Bridge), defined in Table 6-5 is within the common-mode range of the ADC amplifier, VCM(ADC), under a no-load condition (R1 = R2 = R3 = R4). The amplifier common-mode range varies by component, and will be defined in the data sheet based on the gain setting and supply voltage. However, targeting VCM(Bridge) = AVDD / 2 is a good choice as this is typically in the center of the VCM(ADC) range, enabling the highest gain possible per the previous step. Moreover, the bridge configuration in Figure 6-2 inherently sets VCM(Bridge) to AVDD / 2 under a no-load condition when VEXCITATION = AVDD.

Finally, follow the instructions in Section 5.5 if calibration is required.