SBAA532A February   2022  – March 2024 ADS1119 , ADS1120 , ADS1120-Q1 , ADS112C04 , ADS112U04 , ADS1130 , ADS1131 , ADS114S06 , ADS114S06B , ADS114S08 , ADS114S08B , ADS1158 , ADS1219 , ADS1220 , ADS122C04 , ADS122U04 , ADS1230 , ADS1231 , ADS1232 , ADS1234 , ADS1235 , ADS1235-Q1 , ADS124S06 , ADS124S08 , ADS1250 , ADS1251 , ADS1252 , ADS1253 , ADS1254 , ADS1255 , ADS1256 , ADS1257 , ADS1258 , ADS1258-EP , ADS1259 , ADS1259-Q1 , ADS125H01 , ADS125H02 , ADS1260 , ADS1260-Q1 , ADS1261 , ADS1261-Q1 , ADS1262 , ADS1263 , ADS127L01 , ADS130E08 , ADS131A02 , ADS131A04 , ADS131E04 , ADS131E06 , ADS131E08 , ADS131E08S , ADS131M02 , ADS131M03 , ADS131M04 , ADS131M06 , ADS131M08

 

  1.   1
  2.   Abstract
  3.   Trademarks
  4. 1Bridge Overview
  5. 2Bridge Construction
    1. 2.1 Active Elements in Bridge Topologies
      1. 2.1.1 Bridge With One Active Element
        1. 2.1.1.1 Reducing Non-Linearity in a Bridge With One Active Element Using Current Excitation
      2. 2.1.2 Bridge With Two Active Elements in Opposite Branches
        1. 2.1.2.1 Eliminating Non-Linearity in a Bridge With Two Active Elements in Opposite Branches Using Current Excitation
      3. 2.1.3 Bridge With Two Active Elements in the Same Branch
      4. 2.1.4 Bridge With Four Active Elements
    2. 2.2 Strain Gauge and Bridge Construction
  6. 3Bridge Connections
    1. 3.1 Ratiometric Measurements
    2. 3.2 Four-Wire Bridge
    3. 3.3 Six-Wire Bridge
  7. 4Electrical Characteristics of Bridge Measurements
    1. 4.1 Bridge Sensitivity
    2. 4.2 Bridge Resistance
    3. 4.3 Output Common-Mode Voltage
    4. 4.4 Offset Voltage
    5. 4.5 Full-Scale Error
    6. 4.6 Non-Linearity Error and Hysteresis
    7. 4.7 Drift
    8. 4.8 Creep and Creep Recovery
  8. 5Signal Chain Design Considerations
    1. 5.1 Amplification
      1. 5.1.1 Instrumentation Amplifier
        1. 5.1.1.1 INA Architecture and Operation
        2. 5.1.1.2 INA Error Sources
      2. 5.1.2 Integrated PGA
        1. 5.1.2.1 Integrated PGA Architecture and Operation
        2. 5.1.2.2 Benefits of Using an Integrated PGA
    2. 5.2 Noise
      1. 5.2.1 Noise in an ADC Data Sheet
      2. 5.2.2 Calculating NFC for a Bridge Measurement System
    3. 5.3 Channel Scan Time and Signal Bandwidth
      1. 5.3.1 Noise Performance
      2. 5.3.2 ADC Conversion Latency
      3. 5.3.3 Digital Filter Frequency Response
    4. 5.4 AC Excitation
    5. 5.5 Calibration
      1. 5.5.1 Offset Calibration
      2. 5.5.2 Gain Calibration
      3. 5.5.3 Calibration Example
  9. 6Bridge Measurement Circuits
    1. 6.1 Four-Wire Resistive Bridge Measurement with a Ratiometric Reference and a Unipolar, Low-Voltage (≤5 V) Excitation Source
      1. 6.1.1 Schematic
      2. 6.1.2 Pros and Cons
      3. 6.1.3 Parameters and Variables
      4. 6.1.4 Design Notes
      5. 6.1.5 Measurement Conversion
      6. 6.1.6 Generic Register Settings
    2. 6.2 Six-Wire Resistive Bridge Measurement With a Ratiometric Reference and a Unipolar, Low-Voltage (≤ 5 V) Excitation Source
      1. 6.2.1 Schematic
      2. 6.2.2 Pros and Cons
      3. 6.2.3 Parameters and Variables
      4. 6.2.4 Design Notes
      5. 6.2.5 Measurement Conversion
      6. 6.2.6 Generic Register Settings
    3. 6.3 Four-Wire Resistive Bridge Measurement With a Pseudo-Ratiometric Reference and a Unipolar, High-Voltage (> 5 V) Excitation Source
      1. 6.3.1 Schematic
      2. 6.3.2 Pros and Cons
      3. 6.3.3 Parameters and Variables
      4. 6.3.4 Design Notes
      5. 6.3.5 Measurement Conversion
      6. 6.3.6 Generic Register Settings
    4. 6.4 Four-Wire Resistive Bridge Measurement with a Pseudo-Ratiometric Reference and Asymmetric, High-Voltage (> 5 V) Excitation Source
      1. 6.4.1 Schematic
      2. 6.4.2 Pros and Cons
      3. 6.4.3 Parameters and Variables
      4. 6.4.4 Design Notes
      5. 6.4.5 Measurement Conversion
      6. 6.4.6 Generic Register Settings
    5. 6.5 Four-Wire Resistive Bridge Measurement With a Ratiometric Reference and Current Excitation
      1. 6.5.1 Schematic
      2. 6.5.2 Pros and Cons
      3. 6.5.3 Parameters and Variables
      4. 6.5.4 Design Notes
      5. 6.5.5 Measurement Conversion
      6. 6.5.6 Generic Register Settings
    6. 6.6 Measuring Multiple Four-Wire Resistive Bridges in Series with a Pseudo-Ratiometric Reference and a Unipolar, Low-Voltage (≤5V) Excitation Source
      1. 6.6.1 Schematic
      2. 6.6.2 Pros and Cons
      3. 6.6.3 Parameters and Variables
      4. 6.6.4 Design Notes
      5. 6.6.5 Measurement Conversion
      6. 6.6.6 Generic Register Settings
    7. 6.7 Measuring Multiple Four-Wire Resistive Bridges in Parallel Using a Single-Channel ADC With a Ratiometric Reference and a Unipolar, Low-Voltage (≤ 5 V) Excitation Source
      1. 6.7.1 Schematic
      2. 6.7.2 Pros and Cons
      3. 6.7.3 Parameters and Variables
      4. 6.7.4 Design Notes
      5. 6.7.5 Measurement Conversion
      6. 6.7.6 Generic Register Settings
    8. 6.8 Measuring Multiple Four-Wire Resistive Bridges in Parallel Using a Multichannel ADC With a Ratiometric Reference and a Unipolar, Low-Voltage (≤ 5 V) Excitation Source
      1. 6.8.1 Schematic
      2. 6.8.2 Pros and Cons
      3. 6.8.3 Parameters and Variables
      4. 6.8.4 Design Notes
      5. 6.8.5 Measurement Conversion
      6. 6.8.6 Generic Register Settings
  10. 7Summary
  11. 8Revision History

Calibration

Achieving high-accuracy results from a bridge measurement system can require calibration. Choose one of three calibration methods depending on the overall accuracy requirements:

  • A one-point offset error calibration – easy to implement, offers some accuracy improvement
  • A two-point offset and gain error calibration – improved accuracy, requires two measurements
  • A piecewise-linear calibration – highest accuracy, ideal for nonlinear systems and calibration over temperature, requires several calibration points or a look-up table (LUT)

This document focuses on the two-point calibration method because it can significantly improve the system accuracy through a relatively simple calibration process.

The first step of a two-point calibration calculates the offset error, while the second step uses a test load to determine the gain error. A two-point calibration assumes that both the bridge response and the ADC measurement are linear. This assumption helps the user determine how the actual measurements deviate from the ideal measurements using the equation for a line:

Equation 31. y = M ∙ x + B

Figure 5-11 plots the ideal response of a bridge measurement with a green line that has some slope (MIdeal) and y-intercept (BIdeal) that is equal to zero. Comparatively, the actual bridge measurement response in red has a slope (MActual) that is not equal to MIdeal as well as a nonzero y-intercept (BActual).

GUID-20211210-SS0I-MMMC-NNGF-9JJGF5SWLJCS-low.svgFigure 5-11 Bridge Measurement Response: Ideal vs Actual

The calibration process calculates the values of BActual and a scaling factor related to MActual in Figure 5-11, which helps remove the offset error and gain error, respectively. Figure 5-11 specifically shows a positive offset and gain error, though it is possible for one or both of these errors to be negative. This information is then used to accurately correlate the system input to the ADC output. For example, Figure 5-12 shows how calibration might be implemented for a weigh scale system.

GUID-20211110-SS0I-5HFQ-5DGD-1NCRHJJNXMN8-low.svgFigure 5-12 Block Diagram for a Weigh Scale Application with Calibration

In Figure 5-12, an ADC measures a bridge using a ratiometric configuration. A microcontroller captures the data from the ADC, then calculates and stores the calibration values. The offset calibration stores a value for BActual, while the gain calibration stores a scaling factor, M, that is related to MActual. The microcontroller then subtracts BActual from the ADC measurement and scales the result by M. Finally, a display shows the calculated result.

The following two subsections step through the offset and gain calibration process for a generic bridge system that might measure physical parameters such as weight, pressure, or flow. The final subsection applies this information to an example calculation for the weigh scale system shown in Figure 5-12.