SLAU550AB January   2014  – September 2022 MSP430FR2032 , MSP430FR2033 , MSP430FR2110 , MSP430FR2111 , MSP430FR2153 , MSP430FR2155 , MSP430FR2310 , MSP430FR2311 , MSP430FR2353 , MSP430FR2355 , MSP430FR2433 , MSP430FR2532 , MSP430FR2533 , MSP430FR2632 , MSP430FR2633 , MSP430FR4131 , MSP430FR4132 , MSP430FR4133 , MSP430FR5041 , MSP430FR5043 , MSP430FR50431 , MSP430FR5847 , MSP430FR58471 , MSP430FR5848 , MSP430FR5849 , MSP430FR5857 , MSP430FR5858 , MSP430FR5859 , MSP430FR5867 , MSP430FR58671 , MSP430FR5868 , MSP430FR5869 , MSP430FR5887 , MSP430FR5888 , MSP430FR5889 , MSP430FR58891 , MSP430FR5947 , MSP430FR59471 , MSP430FR5948 , MSP430FR5949 , MSP430FR5957 , MSP430FR5958 , MSP430FR5959 , MSP430FR5967 , MSP430FR5968 , MSP430FR5969 , MSP430FR5969-SP , MSP430FR59691 , MSP430FR5986 , MSP430FR5987 , MSP430FR5988 , MSP430FR5989 , MSP430FR5989-EP , MSP430FR59891 , MSP430FR6041 , MSP430FR6043 , MSP430FR60431 , MSP430FR6877 , MSP430FR6879 , MSP430FR68791 , MSP430FR6887 , MSP430FR6888 , MSP430FR6889 , MSP430FR68891 , MSP430FR6927 , MSP430FR69271 , MSP430FR6928 , MSP430FR6972 , MSP430FR6977 , MSP430FR6979 , MSP430FR69791 , MSP430FR6987 , MSP430FR6988 , MSP430FR6989 , MSP430FR69891

 

  1.   Abstract
  2.   Trademarks
  3. 1Introduction
    1. 1.1 BSL Limitations
    2. 1.2 Other Useful Documentation
  4. 2Overview of BSL Features
  5. 3BSL Architecture
    1. 3.1 Communication Interface
      1. 3.1.1 UART BSL
      2. 3.1.2 I2C BSL
    2. 3.2 BSL Memory
      1. 3.2.1 BSL Memory Layout
      2. 3.2.2 BSL Z-Area
      3. 3.2.3 BSL Memory Consideration
    3. 3.3 BSL Invocation
      1. 3.3.1 Software BSL Invocation
        1. 3.3.1.1 Starting the BSL From an External Software Application
        2. 3.3.1.2 BSL Action
          1. 3.3.1.2.1 BSL Action Function 2
      2. 3.3.2 Hardware BSL Invocation
        1. 3.3.2.1 Factors That Prevent Hardware BSL Invocation
      3. 3.3.3 Blank Device Detection
    4. 3.4 BSL Time-out Feature
    5. 3.5 BSL Version Number
    6. 3.6 BSL (User) Configuration
      1. 3.6.1 Configuring the BSL
        1. 3.6.1.1 Example of BSL User Configuration
        2. 3.6.1.2 Implement BSL Configuration in Application Code
  6. 4BSL Protocol
    1. 4.1 BSL Data Packet
      1. 4.1.1 UART Peripheral Interface Wrapper
      2. 4.1.2 I2C Peripheral Interface Wrapper
      3. 4.1.3 BSL Acknowledgment
      4. 4.1.4 BSL Core Response and BSL Core Message
      5. 4.1.5 BSL Core Commands
        1. 4.1.5.1 RX Data Block
        2. 4.1.5.2 RX Password
        3. 4.1.5.3 Mass Erase
        4. 4.1.5.4 CRC Check
        5. 4.1.5.5 Load PC
        6. 4.1.5.6 TX Data Block
        7. 4.1.5.7 TX BSL Version
        8. 4.1.5.8 RX Data Block Fast
        9. 4.1.5.9 Change Baud Rate
    2. 4.2 BSL Security
      1. 4.2.1 Protected Commands
      2. 4.2.2 RAM Erase
      3. 4.2.3 BSL Entry
  7. 5Common BSL Use Cases
    1. 5.1 Overview and Flow Chart
    2. 5.2 Establish a Connection
    3. 5.3 Erase the Device
    4. 5.4 Download the Application
    5. 5.5 Verify the Application
    6. 5.6 Run the Application
  8. 6Customize the BSL
  9. 7Bootloader Versions
    1. 7.1 FR2xx BSL Versions
    2. 7.2 FR4xx BSL Versions
    3. 7.3 FR57xx BSL Versions
    4. 7.4 FR58xx and FR59xx BSL Versions
    5. 7.5 FR6xx BSL Versions
  10. 8Revision History

Hardware BSL Invocation

Applying an appropriate entry sequence on the RST/NMI and TEST pins forces the MSP430 to start program execution at the BSL RESET vector instead of at the RESET vector located at address FFFEh.

If the application interfaces with a computer UART, these two pins can be driven by the DTR and RTS signals of the serial communication port (RS232) after passing level shifters. See the "Hardware Description" section of the MSP430™ Flash Devices Bootloader (BSL) User's Guide for hardware schematics. The standard user reset vector at 0xFFFE is used if TEST is kept low while RST/NMI rises from low to high (standard method, see Figure 3-1).

GUID-6A18E1C1-7AC5-4E6D-90A6-8FDD78DD2C5C-low.gifFigure 3-1 Standard RESET Sequence

The BSL program execution starts when the TEST pin has received a minimum of two rising edges (low-to-high transitions) and if TEST is high while RST/NMI rises from low to high (BSL entry method, see Figure 3-2). This level transition triggering improves BSL startup reliability. The first high level of the TEST pin must be at least tSBW, En (see the device-specific data sheet for tSBW, En parameter).

GUID-65F22B62-AE14-4B32-B3C6-ED66FF6CC014-low.gif
The recommended minimum time for pin states is 250 ns.
Figure 3-2 BSL Entry Sequence at Shared JTAG Pins

The TEST signal is typically used to switch the port pins between their application function and the JTAG function. In devices with BSL functionality, the TEST and RST/NMI pins are also used to invoke the BSL. To invoke the BSL, the RST/NMI pin must be configured as RST and must be kept low while pulling the TEST pin high and while applying the next two edges (falling and rising) on the TEST pin. The BSL is started after the TEST pin is held low after the RST/NMI pin is released (see Figure 3-2).