SLOA284A january   2020  – may 2023 AFE5832 , AFE5832LP , ISO7741 , ISOW7841 , LM25037 , LM25180 , LM5180 , LM5181 , LM5181-Q1 , TX7316 , TX7332

 

  1.   1
  2.   Designing Bipolar High Voltage SEPIC Supply for Ultrasound Smart Probe
  3.   Trademarks
  4. 1Introduction
    1. 1.1 Key Design Challenges
    2. 1.2 Potential Topologies for Generating High Voltage Supply
  5. 2Design of high voltage circuit using SEPIC topology
    1. 2.1 TI HV Supply Architecture Using SEPIC Topology
  6. 3Test Results
    1. 3.1 Efficiency and Load Regulation
    2. 3.2 Output Ripple Measurement
    3. 3.3 Load Transient Test
    4. 3.4 Noise Measurement
    5. 3.5 Thermal Performance
  7. 4Possible Variants of the Design
    1. 4.1 Option 1: Programmable Output Voltage
    2. 4.2 Option 2: Support Input From 1S Li-Ion Battery
    3. 4.3 Option 3: Output Voltage Up to ±100 V
  8. 5Layout Guidelines
  9. 6Clock Synchronization
  10. 7Summary
  11. 8References
  12. 9Revision History

TI HV Supply Architecture Using SEPIC Topology

This design implements a single stage architecture using only a single converter and a switch followed by two complementary output sections to generate the respective positive and negative HV rails. Custom made coupled inductors can benefit reduced energy losses due to leakage inductance, however, using uncoupled inductors helps meet the height requirements and better components choice [1]. The feedback is taken from positive output rail. Figure 2-2 shows the complete schematic of the design and Figure 2-3 shows the physical picture of the board highlighting the HV section.

GUID-C8545391-644A-41BC-A166-D01EBB98A37F-low.gif Figure 2-2 Schematic of the High Voltage Circuit Design for Smart Probe
GUID-C1E3F1C8-4B55-4973-952E-34BA28B89553-low.jpg Figure 2-3 Power Supply Board Highlighting the HV Section

Table 2-1 explains the component selection, and equations for the SEPIC power converter using LM3488 device.

Table 2-1 Design Equations and Selected Components
Parameter Equations Selected Components
Duty cycle
Equation 1. GUID-12968EC4-2C82-4417-8611-B11390CEF2FF-low.gif
LM3488, which can reach a Duty cycle of 100%.
L1 (for minimum 40% current ripple )
Equation 2. GUID-2D89C5E4-92DD-4FA0-954B-3A2F74BFD468-low.gif

where, R is %ripple of input of current (0.4)
100 µH (23% of current ripple), Isat = 1.2A, DCR = 0.377 Ω
L2, L3 (for minimum 40% current ripple) -> L3,L4 in Figure 2-2
Equation 3. GUID-984651BD-575B-4E7D-BCAB-1A4176B3BE28-low.gif
where, R is % ripple of input of current (0.4)
1000 µH (41 % of current ripple) Isat=80 mA, DCR=5.4Ω
MOSFET Q1 in Figure 2-2 VSW(PEAK) = VIN + VOUT+VD=86.28 =86.28V
TOFF < 210 ns @ 250 kHz and D = 94.14% ;
VGS(TH)< VIN
CSD19538Q3A VDS,MAX = 100 V;
RDS, ON = 58 mΩ VGS,TH = 3.2V;
TOFF = 9 ns
CS2, CS3 -> C25, C35 in Figure 2-2 VCS > VIN, MAX ;
Equation 4. GUID-416A1F1E-94BA-4B39-B2A3-3CBA987E2411-low.gif
2.2 µF ; VDC=50V
D2, D3 -> D3, D6 VIN+VOUT=85V - Schottky diode to minimize losses STPS1150 ;VFORWARD = 0.78 V ; VRRM=150 V
COUT2, COUT3 ->C70,C232, C30, C31, C71, C233, C36 in Figure 2-2
Equation 5. GUID-49570B56-C48A-49D9-8312-E07973A77573-low.gif
Equation 6. GUID-B10D98BB-3EFC-49E8-9B80-CB80056C6A43-low.gif

Vripple= 1% *Vout

4 x 2.2 µF - VDC = 100 V
CIN -> C22, C23, C24 in Figure 2-2
Equation 7. GUID-877E4812-0BAD-42DB-AA6D-421E4929AE32-low.gif
2x 47 µf - 0.1 µF - VDC = 10 V
Compensation (RC,CC1 and CC2) R40, C27, C177 in Figure 2-2
Equation 8. GUID-46F1D89D-45BD-4F34-BB48-B302F5947137-low.gif
Equation 9. GUID-366FFAFC-4DD5-460D-8131-CAF5F7D739BB-low.gif
Equation 10. GUID-CD093BE5-2D6B-4C2B-A639-68B843DE4BB7-low.gif
Equation 11. GUID-31CA58E0-5161-449B-8D9B-BE826476B397-low.gif
Equation 12. GUID-D4165FF7-8309-40E7-9DF6-7BD29B354424-low.gif
Rc = 4.70 kΩ - Cc1 = 0.1 µF - Cc2 = 0.1 µF

The output of the SEPIC circuit is cascaded with a π filter followed by an emitter follower configuration (power filter) in order to minimize the AC ripple. The filter is built in order to provide an attenuation of 24.44 dB (see Equation 13) of the AC ripple as shown in Figure 3-3 through Figure 3-6 in Section 3.2.

Equation 13. GUID-413BAE70-B90A-487D-B298-61CE942EDBE2-low.gif

where f0 is the cut-off frequency of the RC filter and f is switching frequency of the input.