SLUAAS4 January   2024 LM5155-Q1 , LM51551-Q1 , LM5156-Q1 , LM51561-Q1 , LM51561H-Q1 , LM5156H-Q1 , LM5157-Q1 , LM51571-Q1 , LM5158-Q1 , LM51581-Q1 , UCC28700-Q1 , UCC28730-Q1 , UCC28740-Q1 , UCC28781-Q1 , UCC28C50-Q1 , UCC28C51-Q1 , UCC28C52-Q1 , UCC28C53-Q1 , UCC28C54-Q1 , UCC28C55-Q1 , UCC28C56H-Q1 , UCC28C56L-Q1 , UCC28C57H-Q1 , UCC28C57L-Q1 , UCC28C58-Q1 , UCC28C59-Q1

 

  1.   1
  2.   Abstract
  3. 1Introduction
    1. 1.1 Low-Voltage Isolated Bias Power Supply
    2. 1.2 High-Voltage Isolated Bias Power Supply
  4. 2Pre-Regulator Requirement
    1. 2.1 Pre-Regulator at Low-Voltage Battery
      1. 2.1.1 Single Pre-Regulators Architecture
      2. 2.1.2 Multiple Pre-Regulators Architecture
    2. 2.2 Pre-Regulator From High-Voltage Battery
  5. 3Fully-Distributed Architecture
  6. 4Semi-Distributed Architecture
  7. 5Centralized Architecture
  8. 6Redundancy in Isolated Bias Power Supply Architectures
    1. 6.1 No Redundancy
    2. 6.2 Redundancy to all Devices
    3. 6.3 Redundancy to Low Side Only
    4. 6.4 Redundancy to High Side Only
  9. 7Summary
  10. 8Terminology

Redundancy to all Devices

In such architecture, both LV and HV batteries are used to supply power to all gate drivers in the system, which provides redundancy to all of them. In this redundant architecture, in case of a failure either from LV or HV batteries, all the gate drivers are still powered from the other battery. In general, the gate drivers are primarily powered using the LV battery. Whereas, the HV battery is used to provide redundancy. This redundant architecture has better reliability from the functional safety point of view but the design adds additional cost in the system.

GUID-20231228-SS0I-LSJ0-0K3F-JP5ZPKMLHWVQ-low.svgFigure 6-2 Redundancy to the all Devices in Fully-Distributed Architecture