SLVAE30E February   2021  – March 2021 TPS1H000-Q1 , TPS1H100-Q1 , TPS1H200A-Q1 , TPS1HA08-Q1 , TPS25200-Q1 , TPS27S100 , TPS2H000-Q1 , TPS2H160-Q1 , TPS2HB16-Q1 , TPS2HB35-Q1 , TPS2HB50-Q1 , TPS4H000-Q1 , TPS4H160-Q1

 

  1.   Trademarks
  2. 1Introduction
  3. 2Driving Resistive Loads
    1. 2.1 Background
    2. 2.2 Application Example
    3. 2.3 Why Use a Smart High Side Switch?
      1. 2.3.1 Accurate Current Sensing
      2. 2.3.2 Adjustable Current Limiting
    4. 2.4 Selecting the Right Smart High Side Switch
      1. 2.4.1 Power Dissipation Calculation
      2. 2.4.2 PWM and Switching Loss
  4. 3Driving Capacitive Loads
    1. 3.1 Background
    2. 3.2 Application Examples
    3. 3.3 Why Use a Smart High Side Switch?
      1. 3.3.1 Capacitive Load Charging
      2. 3.3.2 Inrush Current Mitigation
        1. 3.3.2.1 Capacitor Charging Time
      3. 3.3.3 Thermal Dissipation
      4. 3.3.4 Junction Temperature During Capacitive Inrush
      5. 3.3.5 Over Temperature Shutdown
      6. 3.3.6 Selecting the Correct Smart High Side Switch
  5. 4Driving Inductive Loads
    1. 4.1 Background
    2. 4.2 Application Examples
    3. 4.3 Why Use a Smart High Side Switch?
    4. 4.4 Turn-On Phase
    5. 4.5 Turn-Off Phase
      1. 4.5.1 Demagnetization Time
      2. 4.5.2 Instantaneous Power Losses During Demagnetization
      3. 4.5.3 Total Energy Dissipated During Demagnetization
      4. 4.5.4 Measurement Accuracy
      5. 4.5.5 Application Example
      6. 4.5.6 Calculations
      7. 4.5.7 Measurements
    6. 4.6 Selecting the Correct Smart High Side Switch
  6. 5Driving LED Loads
    1. 5.1 Background
    2. 5.2 Application Examples
    3. 5.3 LED Direct Drive
    4. 5.4 LED Modules
    5. 5.5 Why Use a Smart High Side Switch?
    6. 5.6 Open Load Detection
    7. 5.7 Load Current Sensing
    8. 5.8 Constant Current Source
      1. 5.8.1 Selecting the Correct Smart High Side Switch
  7. 6Appendix
    1. 6.1 Transient Thermal Impedance Data
    2. 6.2 Demagnitization Energy Capability Data
  8. 7References
  9. 8Revision History

Transient Thermal Impedance Data

The following figures model transient junction-to-ambient resistance (RjΘA) for each device in Table 3-1. Figures for multi-channel devices assume uniformly distributed power in each channel that is ON and include effects of mutual self-heating between channels

GUID-20210211-CA0I-TBB9-L0KJ-Q1D6Q6X0BTBF-low.svgFigure 6-1 TPS1H000-Q1 Transient Thermal Impedance ZΘJA
GUID-20210211-CA0I-KK8L-VRMD-Z3NKG4JNHPLB-low.svgFigure 6-2 TPS2H000-Q1 Transient Thermal Impedance ZΘJA
GUID-20210211-CA0I-VTX3-LD7V-9GPGHS3KNV9P-low.svgFigure 6-3 TPS4H000-Q1 Transient Thermal Impedance ZΘJA
GUID-20210211-CA0I-Z3RM-JPJ0-9CWDP1F1XTRG-low.svgFigure 6-4 TPS1H100-Q1 Transient Thermal Impedance ZΘJA
GUID-20210211-CA0I-6QSC-RK87-8GGGCHLZ1QLX-low.svgFigure 6-5 TPS1H200-Q1 Transient Thermal Impedance ZΘJA
GUID-20210211-CA0I-5DVB-LTN5-ZVDZKW0RKGFK-low.svgFigure 6-6 TPS2H160-Q1 Transient Thermal Impedance ZΘJA
GUID-20210211-CA0I-2BWS-PRVL-5KDHRV8BB1X2-low.svgFigure 6-7 TPS4H160-Q1 Transient Thermal Impedance ZΘJA
GUID-20210211-CA0I-5NLM-N9B1-HFH4SP6KZRQQ-low.svgFigure 6-8 TPS1HB50-Q1 Transient Thermal Impedance ZΘJA
GUID-20210211-CA0I-NBG6-H6MK-T9G3KF8BH10Z-low.svgFigure 6-9 TPS2HB50-Q1 Transient Thermal Impedance ZΘJA
GUID-20210211-CA0I-6RSJ-D7FS-MXKZQWBVCLX8-low.svgFigure 6-10 TPS1HB35-Q1 Transient Thermal Impedance ZΘJA
GUID-20210211-CA0I-SS6K-SRJ2-C89DJWD0HPGQ-low.svgFigure 6-11 TPS2HB35-Q1 Transient Thermal Impedance ZΘJA
GUID-20210211-CA0I-JFZM-KZM5-LFWSDG9PNN3D-low.svgFigure 6-12 TPS1HB16-Q1 Transient Thermal Impedance ZΘJA
GUID-20210211-CA0I-SSLW-BFMR-CJWSLP504DWN-low.svgFigure 6-13 TPS2HB16-Q1 Transient Thermal Impedance ZΘJA
GUID-20210211-CA0I-LS6F-STNS-19SWRXC3QFGS-low.svgFigure 6-14 TPS1HA08-Q1 Transient Thermal Impedance ZΘJA
GUID-20210211-CA0I-V9RK-9SZF-SK4NKDBDNQQF-low.svgFigure 6-15 TPS1HB08-Q1 Transient Thermal Impedance ZΘJA