SLVAEX0 October   2020 TPS1H000-Q1 , TPS1H100-Q1 , TPS1H200A-Q1 , TPS1HA08-Q1 , TPS1HB16-Q1 , TPS1HB50-Q1 , TPS2HB16-Q1 , TPS2HB50-Q1 , TPS4H000-Q1 , TPS4H160-Q1

 

  1.   Abstract
  2.   Trademarks
  3. 1Introduction
  4. 2Normal Operation Diagnostics
    1. 2.1 Configuring Diagnostics With SEL/SELx Pin
      1. 2.1.1 Diagnostics Select Pin: SEL1
      2. 2.1.2 Diagnostics Select Pin: SELx
    2. 2.2 Operating Current Measurements Using the SNS/CS Pin
      1. 2.2.1 Internal/External Factor: Load Current Through Device
      2. 2.2.2 External Factor: Analog-to-Digital Converter (ADC)
      3. 2.2.3 External Factor: Probe Ground Termination
      4. 2.2.4 External Factor: Component Tolerances
    3. 2.3 Device Temperature on the Sense (SNS) Pin
  5. 3Fault State Diagnostics
    1. 3.1 Fault Behavior Configurations: Latch/THER/Delay Pin
      1. 3.1.1 Latch Pin
      2. 3.1.2 THER Pin
      3. 3.1.3 Delay Pin
    2. 3.2 Open Load Fault
    3. 3.3 Short to Battery Fault
    4. 3.4 Thermal Shutdown
    5. 3.5 Loss of Ground or Power Supply
    6. 3.6 Summary
  6. 4References

Diagnostics Select Pin: SEL1

Devices such as the TPS1HB16 have a single SEL1 pin that can be configured with a high or low signal. It acts as the diagnostics select pin. Depending on its state, one of two outputs will be measurable from the sense output pin SNS. The first is load current, which allows the SNS pin to output a voltage signal that reflects the load current that the switch is outputting. The second is the device’s junction temperature. The junction temperature is the internal temperature of the switch and is important to monitor to ensure the device remains below the thermal thresholds. These different output configurations are shown in Table 2-3.

Table 2-3 SNS Pin Output Based on SEL1 Pin State
SEL1 Pin State SNS Pin Output
Low Load Current
High Device Temperature