SLWS230E September   2011  – December 2015 TRF3765

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Pin Configuration and Functions
  6. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 4WI Timing: Write Operation
    7. 6.7 Readback 4WI Timing
    8. 6.8 Typical Characteristics
  7. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1 Lock Detect
      2. 7.3.2 LO Divider
      3. 7.3.3 Selecting the VCO and VCO Frequency Control
      4. 7.3.4 External VCO
    4. 7.4 Device Functional Modes
      1. 7.4.1 VCO_TEST_MODE
      2. 7.4.2 Readback Mode
      3. 7.4.3 Integer and Fractional Mode Selection
      4. 7.4.4 PLL Architecture
        1. 7.4.4.1 Selecting PLL Divider Values
        2. 7.4.4.2 Setup Example for Integer Mode
        3. 7.4.4.3 Setup Example for Fractional Mode
      5. 7.4.5 Fractional Mode Setup
    5. 7.5 Register Maps
      1. 7.5.1 PLL 4WI Registers
        1. 7.5.1.1 Register 1
          1. 7.5.1.1.1 CAL_CLK_SEL[3..0]
          2. 7.5.1.1.2 ICP[4..0]
        2. 7.5.1.2 Register 2
          1. 7.5.1.2.1 PLL_DIV <1.0>
          2. 7.5.1.2.2 VCOSEL_MODE
        3. 7.5.1.3 Register 3
        4. 7.5.1.4 Register 4
        5. 7.5.1.5 Register 5
        6. 7.5.1.6 Register 6
      2. 7.5.2 Readback from the Internal Register Banks
        1. 7.5.2.1 Register 0 Write
          1. 7.5.2.1.1 Register 0 Read
  8. Application and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Application
      1. 8.2.1 Design Requirements
      2. 8.2.2 Detailed Design Procedures
        1. 8.2.2.1 Power Supply
        2. 8.2.2.2 Loop Filter
        3. 8.2.2.3 Reference Clock
      3. 8.2.3 Application Curves
  9. Power Supply Recommendations
  10. 10Layout
    1. 10.1 Layout Guidelines
    2. 10.2 Layout Example
  11. 11Device and Documentation Support
    1. 11.1 Trademarks
    2. 11.2 Electrostatic Discharge Caution
    3. 11.3 Glossary
  12. 12Mechanical, Packaging, and Orderable Information

6 Specifications

6.1 Absolute Maximum Ratings

Over operating free-air temperature range (unless otherwise noted).(1)
MIN MAX UNIT
Supply voltage (2) All VCC pins except VCC_TK –0.3 3.6 V
VCC_TK –0.3 5.5
Digital I/O voltage –0.3 VI + 0.5 V
Operating virtual junction temperature, TJ –40 150 °C
Operating ambient temperature, TA –40 85 °C
Storage temperature, Tstg –40 150 °C
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
(2) All voltage values are with respect to network ground pin.

6.2 ESD Ratings

VALUE UNIT
V(ESD) Electrostatic discharge Human body model (HBM), per ANSI/ESDA/JEDEC JS-001(1) ±1000 V
Charged device model (CDM), per JEDEC specification JESD22-C101(2) ±1500
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

6.3 Recommended Operating Conditions

Over operating free-air temperature range (unless otherwise noted).
MIN NOM MAX UNIT
VCC Power-supply voltage 3 3.3 3.6 V
VCC_TK 3.3-V to 5.5-V power-supply voltage 3 3.3 5.5 V
TA Operating ambient temperature –40 85 °C
TJ Operating virtual junction temperature –40 150 °C

6.4 Thermal Information

THERMAL METRIC(1) TRF3765 UNIT
RHB (VQFN)
32 PINS
RθJA Junction-to-ambient thermal resistance 31.6 °C/W
RθJCtop Junction-to-case (top) thermal resistance 21.6 °C/W
RθJB Junction-to-board thermal resistance 5.6 °C/W
ψJT Junction-to-top characterization parameter 0.3 °C/W
ψJB Junction-to-board characterization parameter 5.5 °C/W
RθJCbot Junction-to-case (bottom) thermal resistance 1.1 °C/W
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report, SPRA953.

6.5 Electrical Characteristics

At TA = 25°C and power supply = 3.3 V, unless otherwise noted.
PARAMETERS TEST CONDITIONS MIN TYP MAX UNIT
DC PARAMETERS
ICC Total supply current Internal VCO, 1 output buffer on, divide-by-1 115 mA
Internal VCO, 4 output buffers on, divide-by-1 190
Internal VCO, 1 output buffer on, divide-by-8 120
Internal VCO, 4 output buffers on, divide-by-8 182
External VCO mode, 1 output buffer on, divide-by-1 89
DIGITAL INTERFACE
VIH High-level input voltage 2 3.3 V
VIL Low-level input voltage 0 0.8
VOH High-level output voltage Referenced to VCC_DIG 0.8 × VCC
VOL Low-level output voltage Referenced to VCC_DIG 0.2 × VCC
REFERENCE OSCILLATOR PARAMETERS
fREF Reference frequency 0.5(6) 350(6) MHz
Reference input sensitivity 0.2 3.3 VPP
Reference input impedance Parallel capacitance, 10 MHz 2 pF
Parallel resistance, 10 MHz 2500 Ω
PLL
fPFD PFD frequency 0.5 65(1) MHz
ICP_OUT Charge pump current 4WI programmable; ICP[4..0] = 00000(2) 1.94 mA
In-band normalized phase noise floor Integer mode –221 dBc/Hz
INTERNAL VCO
fVCO VCO frequency range Divide-by-1 2400 4800 MHz
KV VCO gain VCP = 1 V –65 MHz/V
VCO free-running phase noise,
fVCO = 2650 MHz
VCC_TK = 3.3 V At 10 kHz –82 dBc/Hz
At 100 kHz –110
At 1 MHz –130
At 10 MHz –149
At 40 MHz –155
VCC_TK = 5 V At 10 kHz –89 dBc/Hz
At 100 kHz –113
At 1 MHz –133
At 10 MHz –151
At 40 MHz –156
CLOSED-LOOP PLL/VCO
Integrated RMS jitter(3) Fractional mode, fOUT = 2.6 GHz, fPFD = 30.72 MHz(4) 0.36 ps
Integer mode, fOUT = 2.6 GHz, fPFD = 1.6 MHz 0.52
RF OUTPUT/INPUT
fOUT Output frequency range Divide-by-1 2400 4800 MHz
Divide-by-2 1200 2400
Divide-by-4 600 1200
Divide-by-8 300 600
PLO Output power(5) Differential, divide-by-1, one output buffer on, maximum BUFOUT_BIAS 6.5 dBm
External VCO input maximum frequency 20-dB gain loss, VCO pass-through, no PLL 9000 MHz
External VCO input minimum frequency 20-dB gain loss, VCO pass-through, no PLL, divide-by-1 15 MHz
External VCO input level 0 dBm
(1) See Application Information for discussion on PFD frequency selection and calibration logic frequency limitations.
(2) See 4WI Register Descriptions for all possible programmable charge pump currents.
(3) Integrated from 1 kHz to 10 MHz.
(4) See Application Information for information on loop filter characteristics.
(5) See Application Information for external output buffers details.
(6) See Application Information for discussion of VCO calibration clock limitations on reference clock frequency.

6.6 4WI Timing: Write Operation

See Figure 1.
MIN MAX UNIT
th Hold time, data to clock 20 ns
tsu1 Setup time, data to clock 20 ns
t(CH) Clock low duration 20 ns
t(CL) Clock high duration 20 ns
tsu2 Setup time, clock to enable 20 ns
t(CLK) Clock period 50 ns
tw Enable time 50 ns
tsu3 Setup time, latch to data 70 ns

6.7 Readback 4WI Timing

See Figure 2.
MIN MAX UNIT
th Hold time, data to clock 20 ns
tsu1 Setup time, data to clock 20 ns
t(CH) Clock low duration 20 ns
t(CL) Clock high duration 20 ns
tsu2 Setup time, clock to enable 20 ns
tsu3 Setup time, enable to Readback clock 20 ns
td Delay time, clock to Readback data output 10 ns
tw(1) Enable time 50 ns
t(CLK) Clock period 50 ns
(1) Equals Clock period
TRF3765 tim_spi_lws230.gif Figure 1. 4WI Timing Diagram
TRF3765 tim_spi_readback_lws230.gif Figure 2. 4WI Readback Timing Diagram

6.8 Typical Characteristics

Table 1. Table of Graphs

GRAPH NAME FIGURE NO.
Open-Loop Phase Noise vs Temperature(1) Figure 3, Figure 4, Figure 5, Figure 6
Open-Loop Phase Noise vs Voltage(1) Figure 7, Figure 8, Figure 9, Figure 10
Open-Loop Phase Noise vs Temperature(1)(2) Figure 11, Figure 12, Figure 13, Figure 14
Open-Loop Phase Noise vs Voltage(1)(2) Figure 15, Figure 16, Figure 17, Figure 18
Closed-Loop Phase Noise vs Temperature(3) Figure 19, Figure 20, Figure 21, Figure 22, Figure 23, Figure 24, Figure 25
Closed-Loop Phase Noise vs Temperature(2)(3) Figure 26, Figure 27, Figure 28, Figure 29, Figure 30, Figure 31, Figure 32
Closed-Loop Phase Noise vs Divide Ratio(3) Figure 33
Closed-Loop Phase Noise vs Divide Ratio(2)(3) Figure 34
Closed-Loop Phase Noise vs Temperature(4) Figure 35, Figure 36, Figure 37, Figure 38, Figure 39, Figure 40, Figure 41
Closed-Loop Phase Noise vs Temperature(2)(4) Figure 42, Figure 43, Figure 44, Figure 45, Figure 46, Figure 47, Figure 48
Closed-Loop Phase Noise vs Divide Ratio(4) Figure 49
Closed-Loop Phase Noise vs Divide Ratio(2)(4) Figure 50
PFD Spurs vs Temperature(4) Figure 51
Multiples of PFD Spurs(4) Figure 52, Figure 53, Figure 54
Multiples of PFD Spurs(4)(5) Figure 55
Fractional Spurs vs LO Divider(3) Figure 56
Fractional Spurs vs RF Divider and Prescaler(3) Figure 57
Fractional Spurs vs Temperature(3) Figure 58
Multiples of PFD Spurs(3) Figure 59
LO Harmonics(4) Figure 60
Output Power with Multiple Buffers(4) Figure 61, Figure 62
Output Power vs Output Port(4) Figure 63
Output Power vs Buffer Bias(4) Figure 64
VCO Gain (Kv) vs Frequency Figure 65
(1) VCO_TRIM = 32, VTUNE_IN = 1.1 V, CP_TRISTATE = 3 (3-state), and CAL_BYPASS = On.
(2) VCO_BIAS = 600 µA.
(3) Reference frequency = 61.44 MHz; PFD frequency = 30.72 MHz.
(4) Reference frequency = 40 MHz; PFD frequency = 1.6 MHz.
(5) Performance change at frequencies above 1500 MHz results from PLL_DIV_SEL changing from divide-by-1 to divide-by-2.
At TA = 25°C, VCC = 3.3 V, VCC_TK = 3.3 V, LO1_OUTP (single-ended), PWD_BUFF2,3,4 = off, VCO_BIAS = 400 µA; BUFOUT_BIAS = 600 µA, all other registers set per recommended programming in Serial Programming Interface Register Definitions, and standard operating condition, unless otherwise noted.
TRF3765 G001_SLWS230.png Figure 3. Open-Loop Phase Noise vs Temperature
(VCO_SEL = 0 and VCC_TK = 3.3 V)
TRF3765 G003_SLWS230.png Figure 5. Open-Loop Phase Noise vs Temperature
(VCO_SEL = 2 and VCC_TK = 3.3 V)
TRF3765 G005_SLWS230.png Figure 7. Open-Loop Phase Noise vs voltage
(VCO_SEL = 0)
TRF3765 G007_SLWS230.png Figure 9. Open-Loop Phase Noise vs Voltage
(VCO_SEL = 2)
TRF3765 G009_SLWS230.png Figure 11. Open-Loop Phase Noise vs Temperature
(VCO_SEL = 0 and VCC_TK = 5 V)
TRF3765 G011_SLWS230.png Figure 13. Open-Loop Phase Noise vs Temperature
(VCO_SEL = 2 and VCC_TK = 5 V)
TRF3765 G013_SLWS230.png Figure 15. Open-Loop Phase Noise vs Voltage
(VCO_SEL = 0)
TRF3765 G015_SLWS230.png Figure 17. Open-Loop Phase Noise vs Voltage
(VCO_SEL = 2)
TRF3765 G023_SLWS230.png
Figure 19. Closed-Loop Phase Noise vs Temperature
(725 MHz, VCC_TK = 3.3 V, Fractional Mode)
TRF3765 G021_SLWS230.png
Figure 21. Closed-Loop Phase Noise vs Temperature
(1880 MHz, VCC_TK = 3.3 V, Fractional Mode)
TRF3765 G017_SLWS230.png
Figure 23. Closed-Loop Phase Noise vs Temperature
(2650 MHz, VCC_TK = 3.3 V, Fractional Mode)
TRF3765 G019_SLWS230.png
Figure 25. Closed-Loop Phase Noise vs Temperature
(4750 MHz, VCC_TK = 3.3 V, Fractional Mode)
TRF3765 G029_SLWS230.png
Figure 27. Closed-Loop Phase Noise vs Temperature
(942.5 MHz, VCC_TK = 5 V, Fractional Mode)
TRF3765 G027_SLWS230.png
Figure 29. Closed-Loop Phase Noise vs Temperature
(2120 MHz, VCC_TK = 5 V, Fractional Mode)
TRF3765 G025_SLWS230.png
Figure 31. Closed-Loop Phase Noise vs Temperature
(3500 MHz, VCC_TK = 5 V, Fractional Mode)
TRF3765 G031_SLWS230.png
Figure 33. Closed-Loop Phase Noise vs Divide Ratio
(VCC_TK = 3.3 V, Fractional Mode)
TRF3765 G039_SLWS230.png
Figure 35. Closed-Loop Phase Noise vs Temperature
(728 MHz, VCC_TK = 3.3 V, Integer Mode)
TRF3765 G037_SLWS230.png
Figure 37. Closed-Loop Phase Noise vs Temperature
(1842.5 MHz, VCC_TK = 3.3 V, Integer Mode)
TRF3765 G033_SLWS230.png
Figure 39. Closed-Loop Phase Noise vs Temperature
(2600 MHz, VCC_TK = 3.3 V, Integer Mode)
TRF3765 G035_SLWS230.png
Figure 41. Closed-Loop Phase Noise vs Temperature
(4800 MHz, VCC_TK = 3.3 V, Integer Mode)
TRF3765 G045_SLWS230.png
Figure 43. Closed-Loop Phase Noise vs Temperature
(942.5 MHz, VCC_TK = 5 V, Integer Mode)
TRF3765 G043_SLWS230.png
Figure 45. Closed-Loop Phase Noise vs Temperature
(2140 MHz, VCC_TK = 5 V, Integer Mode)
TRF3765 G041_SLWS230.png
Figure 47. Closed-Loop Phase Noise vs Temperature
(3500 MHz, VCC_TK = 5 V, Integer Mode)
TRF3765 G047_SLWS230.png
Figure 49. Closed-Loop Phase Noise vs Divide Ratio
(VCC_TK = 3.3 V, Integer Mode)
TRF3765 G049_SLWS230.png Figure 51. PFD Spurs vs Temperature
(Integer Mode)
TRF3765 G051_SLWS230.png Figure 53. Multiples of PFD Spurs
(LO_DIV = 8, Integer Mode)
TRF3765 G053_SLWS230.png Figure 55. Multiples of PFD Spurs
(LO_DIV = 2, Integer Mode)
TRF3765 G055_SLWS230.png Figure 57. Fractional Spurs vs RF Divider and Prescaler
TRF3765 G057_SLWS230.png Figure 59. Multiples of PFD Spurs
(Fractional Mode)
TRF3765 G059_SLWS230.png Figure 61. Output Power on LO1_OUTP With Multiple Buffers
TRF3765 G061_SLWS230.png Figure 63. Output Power vs Output Port
TRF3765 G063_SLWS230.png Figure 65. VCO Gain (Kv) vs Frequency
TRF3765 G002_SLWS230.png Figure 4. Open-Loop Phase Noise vs Temperature
(VCO_SEL = 1 and VCC_TK = 3.3 V)
TRF3765 G004_SLWS230.png Figure 6. Open-Loop Phase Noise vs Temperature
(VCO_SEL = 3 and VCC_TK = 3.3 V)
TRF3765 G006_SLWS230.png Figure 8. Open-Loop Phase Noise vs Voltage
(VCO_SEL = 1)
TRF3765 G008_SLWS230.png Figure 10. Open-Loop Phase Noise vs Voltage
(VCO_SEL = 3)
TRF3765 G010_SLWS230.png Figure 12. Open-Loop Phase Noise vs Temperature
(VCO_SEL = 1 and VCC_TK = 5 V)
TRF3765 G012_SLWS230.png Figure 14. Open-Loop Phase Noise vs Temperature
(VCO_SEL = 3 and VCC_TK = 5 V)
TRF3765 G014_SLWS230.png Figure 16. Open-Loop Phase Noise vs Voltage
(VCO_SEL = 1)
TRF3765 G016_SLWS230.png Figure 18. Open-Loop Phase Noise vs Voltage
(VCO_SEL = 3)
TRF3765 G022_SLWS230.png
Figure 20. Closed-Loop Phase NoisE vs Temperature
(942.5 MHz, VCC_TK = 3.3 V, Fractional Mode)
TRF3765 G020_SLWS230.png
Figure 22. Closed-Loop Phase Noise vs Temperature
(2120 MHz, VCC_TK = 3.3 V, Fractional Mode)
TRF3765 G018_SLWS230.png
Figure 24. Closed-Loop Phase Noise vs Temperature
(3500 MHz, VCC_TK = 3.3 V, Fractional Mode)
TRF3765 G030_SLWS230.png
Figure 26. Closed-Loop Phase Noise vs Temperature
(725 MHz, VCC_TK = 5 V, Fractional Mode)
TRF3765 G028_SLWS230.png
Figure 28. Closed-Loop Phase Noise vs Temperature
(1880 MHz, VCC_TK = 5 V, Fractional Mode)
TRF3765 G024_SLWS230.png
Figure 30. Closed-Loop Phase Noise vs Temperature
(2650 MHz, VCC_TK = 5 V, Fractional Mode)
TRF3765 G026_SLWS230.png
Figure 32. Closed-Loop Phase Noise vs Temperature
(4750 MHz, VCC_TK = 5 V, Fractional Mode)
TRF3765 G032_SLWS230.png
Figure 34. Closed-Loop Phase Noise vs Divide Ratio
(VCC_TK = 5 V, Fractional Mode)
TRF3765 G038_SLWS230.png
Figure 36. Closed-Loop Phase Noise vs Temperature
(942.5 MHz, VCC_TK = 3.3 V, Integer Mode)
TRF3765 G036_SLWS230.png
Figure 38. Closed-Loop Phase Noise vs Temperature
(2140 MHz, VCC_TK = 3.3 V, Integer Mode)
TRF3765 G034_SLWS230.png
Figure 40. Closed-Loop Phase Noise vs Temperature
(3500 MHz, VCC_TK = 3.3 V, Integer Mode)
TRF3765 G046_SLWS230.png
Figure 42. Closed-Loop Phase Noise vs Temperature
(728 MHz, VCC_TK = 5 V, Integer Mode)
TRF3765 G044_SLWS230.png
Figure 44. Closed-Loop Phase Noise vs Temperature
(1842.5 MHz, VCC_TK = 5 V, Integer Mode)
TRF3765 G040_SLWS230.png
Figure 46. Closed-Loop Phase Noise vs Temperature
(2600 MHz, VCC_TK = 5 V, Integer Mode)
TRF3765 G042_SLWS230.png
Figure 48. Closed-Loop Phase Noise vs Temperature
(4800 MHz, VCC_TK = 5 V, Integer Mode)
TRF3765 G048_SLWS230.png
Figure 50. Closed-Loop Phase Noise vs Divide Ratio
(VCC_TK = 5 V, Integer Mode)
TRF3765 G050_SLWS230.png Figure 52. Multiples of PFD Spurs
(Integer Mode)
TRF3765 G052_SLWS230.png Figure 54. Multiples of PFD spurs
(LO_DIV = 4, Integer Mode)
TRF3765 G054_SLWS230.png Figure 56. Fractional Spurs vs LO divider
TRF3765 G056_SLWS230.png Figure 58. Fractional Spurs vs Temperature
TRF3765 G058_SLWS230.png Figure 60. LO Harmonics
TRF3765 G060_SLWS230.png Figure 62. Output Power With Multiple Buffers
TRF3765 G062_SLWS230.png Figure 64. Output Power vs Buffer Bias