SNAA411 September   2024 CDCLVC1102 , CDCLVC1103 , CDCLVC1104 , CDCLVC1110 , CDCLVD1204 , LMK00301 , LMK00304 , LMK00306 , LMK00308 , LMK01801 , LMK04832 , LMK1C1102 , LMK1C1103 , LMK1C1104 , LMK1C1106 , LMK1C1108 , LMK1D1204 , LMK1D1208 , LMX2485 , LMX2491 , LMX2572 , LMX2592 , LMX2594 , LMX2595 , LMX2820

 

  1.   1
  2.   Abstract
  3.   Trademarks
  4. 1Generic Clock Tree
  5. 2Sine Wave Slew Rate Requirement
  6. 3Current Approach vs Clock Buffer
  7. 4Clock Buffer Implementation
    1. 4.1 Clock Buffer Common Input Stages
    2. 4.2 Choosing Between Internal or External DC Bias
    3. 4.3 Single Ended or LVCMOS Signal
    4. 4.4 Differential Inputs
  8. 5Performance Improvements, Results With Clock Buffer
    1. 5.1 FSWP Phase Noise Analyzer Measurements Case
    2. 5.2 TI LMX2820 Noise Improvements With Sine to Square Wave Clock Buffer
      1. 5.2.1 LMX2820 Phase Noise and RMS Jitter Results Summary
  9. 6Sine to Square Wave Clock Buffer Comparison
    1. 6.1 LMK1C110x Additive Noise vs Others
  10. 7Summary
  11. 8References

Clock Buffer Common Input Stages

There are two major buffer input stages, single ended (LVCMOS) or differential (LVDS, LVPECL, CML, LP-HCSL, HCSL, HTSL). The differential inputs can be standard specific or universal inputs. Universal inputs accept all the supported standard input driver interface.

Differential inputs can also be used as single ended input. Inverting or non-inverting input is selected as reference clock input and the other input is DC biased to the mid point reference clock input. Both clock reference and DC biased inputs are set within the input swing and common mode range requirements of each device.

In the following sections, we discuss internal or external DC bias use, single ended input and differential input re-bias techniques across different TI clock buffer families.