SNAA411 September   2024 CDCLVC1102 , CDCLVC1103 , CDCLVC1104 , CDCLVC1110 , CDCLVD1204 , LMK00301 , LMK00304 , LMK00306 , LMK00308 , LMK01801 , LMK04832 , LMK1C1102 , LMK1C1103 , LMK1C1104 , LMK1C1106 , LMK1C1108 , LMK1D1204 , LMK1D1208 , LMX2485 , LMX2491 , LMX2572 , LMX2592 , LMX2594 , LMX2595 , LMX2820

 

  1.   1
  2.   Abstract
  3.   Trademarks
  4. 1Generic Clock Tree
  5. 2Sine Wave Slew Rate Requirement
  6. 3Current Approach vs Clock Buffer
  7. 4Clock Buffer Implementation
    1. 4.1 Clock Buffer Common Input Stages
    2. 4.2 Choosing Between Internal or External DC Bias
    3. 4.3 Single Ended or LVCMOS Signal
    4. 4.4 Differential Inputs
  8. 5Performance Improvements, Results With Clock Buffer
    1. 5.1 FSWP Phase Noise Analyzer Measurements Case
    2. 5.2 TI LMX2820 Noise Improvements With Sine to Square Wave Clock Buffer
      1. 5.2.1 LMX2820 Phase Noise and RMS Jitter Results Summary
  9. 6Sine to Square Wave Clock Buffer Comparison
    1. 6.1 LMK1C110x Additive Noise vs Others
  10. 7Summary
  11. 8References

Performance Improvements, Results With Clock Buffer

Adding a low noise clock buffer between OCXO/TCXO input and the slew-rate sensitive clock devices helps minimize the phase noise degradation. Phase noise improvement in PLL based clock devices is often debated because input buffer stage on the PLLs devices critical for phase noise is extremely low noise so adding a buffer to improve slew rate ends up elevating the total phase noise. In the following section, we present a study with and without low noise sine to square buffer before the LMX2820 synthesizer device and note the results.