SNVA994A February   2022  – March 2023 LM5157 , LM5157-Q1 , LM51571-Q1 , LM5158 , LM5158-Q1 , LM51581 , LM51581-Q1

 

  1.   1
  2.   Trademarks
  3. 1Introduction
  4. 2Example Application
  5. 3Calculations and Component Selection
    1. 3.1 Switching Frequency
    2. 3.2 Transformer Selection
      1. 3.2.1 Maximum Duty Cycle and Turns Ratio Selection
      2. 3.2.2 Primary Winding Inductance Selection
    3. 3.3 Slope Compensation Check
    4. 3.4 Diode Selection
    5. 3.5 Output Capacitor Selection
    6. 3.6 Input Capacitor Selection
    7. 3.7 UVLO Resistor Selection
    8. 3.8 Control Loop Compensation
      1. 3.8.1 Crossover Frequency (fcross) Selection
      2. 3.8.2 RCOMP Selection
      3. 3.8.3 CCOMP Selection
      4. 3.8.4 CHF Selection
  6. 4Component Selection Summary
    1. 4.1 Application Circuit
    2. 4.2 Bill of Materials
  7. 5Small Signal Frequency Analysis
    1. 5.1 Flyback Regulator Modulator Modeling
    2. 5.2 Compensation Modeling
  8. 6Revision History

Flyback Regulator Modulator Modeling

These equations model the plant of a peak current mode flyback regulator in continuous conduction mode.

Table 5-1 Control Loop Equations
Simplified FormulaComprehensive Formula
Modulator Equations
Modulator Transfer Function
Equation 26. V^LOAD(s)V^COMP(s)=AM1+sωZ_ESR1-sωZ_RHP1+ sωP_LF
Equation 27. V^LOAD(s)V^COMP(s)=AM1+sωZ_ESR1- sωZ_RHP1+ sωP_LF1+sQ×ωn+s2ωn2
Modulator DC Gain
Equation 28. AM=GCOMP×NPNSVLOAD2POUT1-D1+D×ACS×RS
RHP Zero
Equation 29. ωZ_RHP=NP2NS2×VLOAD2POUT×1-D2LM×D
ESR Zero
Equation 30. ωZ_ESR=1CLOAD×RESR
Low Frequency Pole
Equation 31. ωP_LF=1+DCLOAD×VLOAD2POUT
Sub-Harmonic Double PoleNot Considered
Equation 32. ωn=π×fSW
Quality FactorNot Considered
Equation 33. Q=1πD'×1+sesn-12
Slope CompensationNot Considered
Equation 34. se=VSLOPE+ISLOPE×RSL×fSW
Sensed Rising Inductor SlopeNot Considered
Equation 35. sn=VSUPPLY×1-D×RS×ACSLM
  1. GCOMP is COMP to PWM gain, 0.142V/V