SPRACW9A June   2021  – March 2023 TMS320F2800132 , TMS320F2800132 , TMS320F2800133 , TMS320F2800133 , TMS320F2800135 , TMS320F2800135 , TMS320F2800137 , TMS320F2800137 , TMS320F2800152-Q1 , TMS320F2800152-Q1 , TMS320F2800153-Q1 , TMS320F2800153-Q1 , TMS320F2800154-Q1 , TMS320F2800154-Q1 , TMS320F2800155 , TMS320F2800155 , TMS320F2800155-Q1 , TMS320F2800155-Q1 , TMS320F2800156-Q1 , TMS320F2800156-Q1 , TMS320F2800157 , TMS320F2800157 , TMS320F2800157-Q1 , TMS320F2800157-Q1 , TMS320F280021 , TMS320F280021 , TMS320F280021-Q1 , TMS320F280021-Q1 , TMS320F280023 , TMS320F280023 , TMS320F280023-Q1 , TMS320F280023-Q1 , TMS320F280023C , TMS320F280023C , TMS320F280025 , TMS320F280025 , TMS320F280025-Q1 , TMS320F280025-Q1 , TMS320F280025C , TMS320F280025C , TMS320F280025C-Q1 , TMS320F280025C-Q1 , TMS320F280033 , TMS320F280033 , TMS320F280034 , TMS320F280034 , TMS320F280034-Q1 , TMS320F280034-Q1 , TMS320F280036-Q1 , TMS320F280036-Q1 , TMS320F280036C-Q1 , TMS320F280036C-Q1 , TMS320F280037 , TMS320F280037 , TMS320F280037-Q1 , TMS320F280037-Q1 , TMS320F280037C , TMS320F280037C , TMS320F280037C-Q1 , TMS320F280037C-Q1 , TMS320F280038-Q1 , TMS320F280038-Q1 , TMS320F280038C-Q1 , TMS320F280038C-Q1 , TMS320F280039 , TMS320F280039 , TMS320F280039-Q1 , TMS320F280039-Q1 , TMS320F280039C , TMS320F280039C , TMS320F280039C-Q1 , TMS320F280039C-Q1 , TMS320F280040-Q1 , TMS320F280040-Q1 , TMS320F280040C-Q1 , TMS320F280040C-Q1 , TMS320F280041 , TMS320F280041 , TMS320F280041-Q1 , TMS320F280041-Q1 , TMS320F280041C , TMS320F280041C , TMS320F280041C-Q1 , TMS320F280041C-Q1 , TMS320F280045 , TMS320F280045 , TMS320F280048-Q1 , TMS320F280048-Q1 , TMS320F280048C-Q1 , TMS320F280048C-Q1 , TMS320F280049 , TMS320F280049 , TMS320F280049-Q1 , TMS320F280049-Q1 , TMS320F280049C , TMS320F280049C , TMS320F280049C-Q1 , TMS320F280049C-Q1 , TMS320F28075 , TMS320F28075 , TMS320F28075-Q1 , TMS320F28075-Q1 , TMS320F28076 , TMS320F28076 , TMS320F28374D , TMS320F28374D , TMS320F28374S , TMS320F28374S , TMS320F28375D , TMS320F28375D , TMS320F28375S , TMS320F28375S , TMS320F28375S-Q1 , TMS320F28375S-Q1 , TMS320F28376D , TMS320F28376D , TMS320F28376S , TMS320F28376S , TMS320F28377D , TMS320F28377D , TMS320F28377D-EP , TMS320F28377D-EP , TMS320F28377D-Q1 , TMS320F28377D-Q1 , TMS320F28377S , TMS320F28377S , TMS320F28377S-Q1 , TMS320F28377S-Q1 , TMS320F28378D , TMS320F28378D , TMS320F28378S , TMS320F28378S , TMS320F28379D , TMS320F28379D , TMS320F28379D-Q1 , TMS320F28379D-Q1 , TMS320F28379S , TMS320F28379S , TMS320F28384D , TMS320F28384D , TMS320F28384D-Q1 , TMS320F28384D-Q1 , TMS320F28384S , TMS320F28384S , TMS320F28384S-Q1 , TMS320F28384S-Q1 , TMS320F28386D , TMS320F28386D , TMS320F28386D-Q1 , TMS320F28386D-Q1 , TMS320F28386S , TMS320F28386S , TMS320F28386S-Q1 , TMS320F28386S-Q1 , TMS320F28388D , TMS320F28388D , TMS320F28388S , TMS320F28388S , TMS320F28P650DH , TMS320F28P650DH , TMS320F28P650DK , TMS320F28P650DK , TMS320F28P650SH , TMS320F28P650SH , TMS320F28P650SK , TMS320F28P650SK , TMS320F28P659DH-Q1 , TMS320F28P659DH-Q1 , TMS320F28P659DK-Q1 , TMS320F28P659DK-Q1 , TMS320F28P659SH-Q1 , TMS320F28P659SH-Q1

 

  1.   Abstract
  2.   Trademarks
  3. 1Introduction
    1. 1.1 Memory Cross-Talk Challenges
    2. 1.2 Resources for Signal Conditioning Circuit Design
      1. 1.2.1 TI Precision Labs - SAR ADC Input Driver Design Series
      2. 1.2.2 Analog Engineer's Calculator
      3. 1.2.3 Related Application Reports
      4. 1.2.4 TINA-TI SPICE-Based Analog Simulation Program
      5. 1.2.5 PSPICE for TI
      6. 1.2.6 ADC Input Circuit Evaluation for C2000 MCUs
      7. 1.2.7 Charge-Sharing Driving Circuits for C2000 ADCs
  4. 2Review of ADC Input Settling
    1. 2.1 Mechanism of ADC Input Settling
    2. 2.2 Symptoms of Inadequate Settling
      1. 2.2.1 Distortion
      2. 2.2.2 Memory Cross-Talk
      3. 2.2.3 Accuracy
    3. 2.3 C2000 ADC Architecture
  5. 3Problem Statement
    1. 3.1 Example System
    2. 3.2 S+H Settling Analysis
    3. 3.3 Charge-Sharing Analysis
    4. 3.4 Problem Summary
  6. 4Dedicated ADC Sampling
    1. 4.1 Dedicated ADC Concept
    2. 4.2 Settling Mechanism for Dedicated ADC
    3. 4.3 Design Flow for Dedicated ADC
    4. 4.4 Simulating Settling Performance for a Dedicated ADC Circuit
  7. 5Pre-Sampling VREFLO
    1. 5.1 VREFLO Sampling Concept
    2. 5.2 Properties of VREFLO Sampling Method Error
    3. 5.3 Gain Error Compensation
      1. 5.3.1 Methods for Determining Compensation Coefficients
    4. 5.4 VREFLO Sampling Design Flow
    5. 5.5 Discussion of VREFLO Sampling Sequences
  8. 6Summary
  9. 7References
  10. 8Revision History

Charge-Sharing Analysis

The previous section demonstrated that using an aggressive S+H window with this example circuit results in significant settling error. Another option would be to investigate whether increasing the external capacitor value on the V2 pin and using a charge sharing design might provide a feasible alternative design with only a minor hardware change.

As presented in Charge-Sharing Driving Circuits for C2000 ADCs, the external capacitor in a charge-sharing application should be selected to be:

Equation 4. C S =   ( 2 N + 2   C H )   -   C p

In this case, Cs would then be selected to be approximately 200 nF since CH is 12.5 pF and N is 12-bits.

Given this capacitor value, it is possible to calculate the maximum acceptable sample rate using the formula shown in Equation 5:

Equation 5. f s   1   / ( 0.7     R S   C S   )

Since Cs is 200 nF and Rs is 7444Ω (the parallel combination of the 1MΩ and 7.5kΩ resistors in the voltage divider) the sampling rate on this channel, fs, should be kept below about 960Hz. Since the sample rate is fixed at 100 kHz, the charge sharing input design also suffers from a large disconnect between the operating parameters for optimum performance and the actual parameters that the circuit is using.