SPRACY9 March   2023 F29H850TU , F29H850TU , TMS320F2800132 , TMS320F2800132 , TMS320F2800133 , TMS320F2800133 , TMS320F2800135 , TMS320F2800135 , TMS320F2800137 , TMS320F2800137 , TMS320F2800152-Q1 , TMS320F2800152-Q1 , TMS320F2800153-Q1 , TMS320F2800153-Q1 , TMS320F2800154-Q1 , TMS320F2800154-Q1 , TMS320F2800155 , TMS320F2800155 , TMS320F2800155-Q1 , TMS320F2800155-Q1 , TMS320F2800156-Q1 , TMS320F2800156-Q1 , TMS320F2800157 , TMS320F2800157 , TMS320F2800157-Q1 , TMS320F2800157-Q1 , TMS320F280021 , TMS320F280021 , TMS320F280021-Q1 , TMS320F280021-Q1 , TMS320F280023 , TMS320F280023 , TMS320F280023-Q1 , TMS320F280023-Q1 , TMS320F280023C , TMS320F280023C , TMS320F280025 , TMS320F280025 , TMS320F280025-Q1 , TMS320F280025-Q1 , TMS320F280025C , TMS320F280025C , TMS320F280025C-Q1 , TMS320F280025C-Q1 , TMS320F280033 , TMS320F280033 , TMS320F280034 , TMS320F280034 , TMS320F280034-Q1 , TMS320F280034-Q1 , TMS320F280036-Q1 , TMS320F280036-Q1 , TMS320F280036C-Q1 , TMS320F280036C-Q1 , TMS320F280037 , TMS320F280037 , TMS320F280037-Q1 , TMS320F280037-Q1 , TMS320F280037C , TMS320F280037C , TMS320F280037C-Q1 , TMS320F280037C-Q1 , TMS320F280038-Q1 , TMS320F280038-Q1 , TMS320F280038C-Q1 , TMS320F280038C-Q1 , TMS320F280039 , TMS320F280039 , TMS320F280039-Q1 , TMS320F280039-Q1 , TMS320F280039C , TMS320F280039C , TMS320F280039C-Q1 , TMS320F280039C-Q1 , TMS320F280040-Q1 , TMS320F280040-Q1 , TMS320F280040C-Q1 , TMS320F280040C-Q1 , TMS320F280041 , TMS320F280041 , TMS320F280041-Q1 , TMS320F280041-Q1 , TMS320F280041C , TMS320F280041C , TMS320F280041C-Q1 , TMS320F280041C-Q1 , TMS320F280045 , TMS320F280045 , TMS320F280048-Q1 , TMS320F280048-Q1 , TMS320F280048C-Q1 , TMS320F280048C-Q1 , TMS320F280049 , TMS320F280049 , TMS320F280049-Q1 , TMS320F280049-Q1 , TMS320F280049C , TMS320F280049C , TMS320F280049C-Q1 , TMS320F280049C-Q1 , TMS320F28075 , TMS320F28075 , TMS320F28075-Q1 , TMS320F28075-Q1 , TMS320F28076 , TMS320F28076 , TMS320F28374D , TMS320F28374D , TMS320F28374S , TMS320F28374S , TMS320F28375D , TMS320F28375D , TMS320F28375S , TMS320F28375S , TMS320F28375S-Q1 , TMS320F28375S-Q1 , TMS320F28376D , TMS320F28376D , TMS320F28376S , TMS320F28376S , TMS320F28377D , TMS320F28377D , TMS320F28377D-EP , TMS320F28377D-EP , TMS320F28377D-Q1 , TMS320F28377D-Q1 , TMS320F28377S , TMS320F28377S , TMS320F28377S-Q1 , TMS320F28377S-Q1 , TMS320F28378D , TMS320F28378D , TMS320F28378S , TMS320F28378S , TMS320F28379D , TMS320F28379D , TMS320F28379D-Q1 , TMS320F28379D-Q1 , TMS320F28379S , TMS320F28379S , TMS320F28384D , TMS320F28384D , TMS320F28384D-Q1 , TMS320F28384D-Q1 , TMS320F28384S , TMS320F28384S , TMS320F28384S-Q1 , TMS320F28384S-Q1 , TMS320F28386D , TMS320F28386D , TMS320F28386D-Q1 , TMS320F28386D-Q1 , TMS320F28386S , TMS320F28386S , TMS320F28386S-Q1 , TMS320F28386S-Q1 , TMS320F28388D , TMS320F28388D , TMS320F28388S , TMS320F28388S , TMS320F28P650DH , TMS320F28P650DH , TMS320F28P650DK , TMS320F28P650DK , TMS320F28P650SH , TMS320F28P650SH , TMS320F28P650SK , TMS320F28P650SK , TMS320F28P659DH-Q1 , TMS320F28P659DH-Q1 , TMS320F28P659DK-Q1 , TMS320F28P659DK-Q1 , TMS320F28P659SH-Q1 , TMS320F28P659SH-Q1

 

  1.   Abstract
  2.   Trademarks
  3. 1Introduction
    1. 1.1 Mechanism of ADC Input Settling
    2. 1.2 Symptoms of Inadequate Settling
      1. 1.2.1 Distortion
      2. 1.2.2 Memory Cross-Talk
      3. 1.2.3 Accuracy
      4. 1.2.4 C2000 ADC Architecture
    3. 1.3 Resources
      1. 1.3.1 TINA-TI SPICE-Based Analog Simulation Program
      2. 1.3.2 PSPICE for TI Design and Simulation Tool
      3. 1.3.3 TI Precision Labs - SAR ADC Input Driver Design Series
      4. 1.3.4 Analog Engineer's Calculator
      5. 1.3.5 Related Application Reports
      6. 1.3.6 PSpice for TI ADC Input Models
  4. 2Input Settling Design Steps
    1. 2.1 Select the ADC
    2. 2.2 Find the Minimum Op-Amp Bandwidth and RC Filter Ranges
      1. 2.2.1 Select Type
      2. 2.2.2 Resolution
      3. 2.2.3 Csh
      4. 2.2.4 Full-Scale Range
      5. 2.2.5 Acquisition Time
      6. 2.2.6 Outputs
      7. 2.2.7 Math Behind the Calculator
    3. 2.3 Select an Op-Amp
    4. 2.4 Verify the Op-Amp Model
    5. 2.5 Build the ADC Input Model
      1. 2.5.1 Vin
      2. 2.5.2 Voa, Voa_SS, and Verror
      3. 2.5.3 Rs, Cs, and Vcont
      4. 2.5.4 Ch, Ron, and Cp
      5. 2.5.5 S+H Switch, Discharge Switch, tacq, and tdis
    6. 2.6 Refine RC Filter Values Via Simulation
    7. 2.7 Perform Final Simulations
    8. 2.8 Input Design Worksheet
  5. 3Example Circuit Design
    1. 3.1  Select the ADC
    2. 3.2  Find the Minimum Op-Amp Bandwidth and RC Filter Ranges
    3. 3.3  Verify the Op-Amp Model
    4. 3.4  Build the ADC Input Model
    5. 3.5  Bias Point Analysis to Determine Voa_ss
    6. 3.6  Transient Analysis to Determine Voa_ss
    7. 3.7  Perform Initial Transient Analysis
    8. 3.8  Iterative Approach to Refine RC Filter Values
    9. 3.9  Perform Final Transient Analysis
    10. 3.10 Perform Final Transient Analysis
    11. 3.11 Further Refinement
    12. 3.12 Further Simulations
    13. 3.13 Completed Worksheet
  6. 4Working With Existing Circuits or Additional Constraints
    1. 4.1 Existing Circuits
      1. 4.1.1 Brief Overview of Charge Sharing
      2. 4.1.2 Charge Sharing Example
      3. 4.1.3 Additional Resources for Charge Sharing
    2. 4.2 Pre-Selected Op-Amp
      1. 4.2.1 Pre-Selected Op-Amp Example
    3. 4.3 Pre-Selected Rs and Cs Values
      1. 4.3.1 Analytical Solution for ADC Acquisition Time
      2. 4.3.2 Example Analytical Solution for ADC Acquisition Time
  7. 5Summary
  8. 6References

Verify the Op-Amp Model

Next, it is necessary to obtain the PSpice for TI model for the op-amp selected in the previous step.

The PSpice for TI model for the selected op-amp can be obtained using the PSpice Part Search tool. To launch the PSpice Part Search tool, go to Place ➔ PSpice Component... ➔ Search... using the menu in the upper left of the PSpice for TI schematic capture window. Alternatively, click the Launch PSpice Part Search button in the upper right of the PSpice for TI schematic capture window. The icon for this button looks like an integrated circuit with a magnifying glass. Enter the part name of the selected op-amp in the search bar of the PSpice Part Search tool to find the PSpice for TI model.

The TI Precision Labs video Selecting and Verifying the Driver Amplifier provides detailed instructions on how to verify the model against the information provided in the device-specific data manual. Specifically, the model must be verified against the "Open-Loop Gain and Phase vs Frequency" plot provided in the device-specific data manual as well as one or both of the "Open-Loop Output Impedance vs Frequency" and "Closed-Loop Output Impedance vs Frequency" plots provided in the device-specific data manual. To generate these plots, an AC simulation must be performed.

Note that performing an AC simulation in PSpice for TI requires the creation of an AC Sweep / Noise simulation profile. When performing an AC simulation in PSpice for TI, ensure that all AC sources have an AC magnitude of 1. The magnitude in decibels of an output variable can be measured using a dB Magnitude marker. Similarly, the phase in degrees of an output variable can be measured using a Phase marker. To place these markers, go to PSpice ➔ Markers ➔ Advanced using the menu in the upper left of the PSpice for TI schematic capture window. Measuring the magnitude in decibels and the phase in degrees of a trace expression more complex than a single output variable is only possible from the PSpice for TI simulation window. In the PSpice for TI simulation window, the magnitude in decibels of a trace expression can be measured using the DB() function, and the phase in degrees of a trace expression can be measured using the P() function.