David Van Schravendijk
For years, multiphase DC/DC converters have powered multicore processors in servers, mobile phones, tablets and PCs. Today’s modern field-programmable gate arrays (FPGAs) now integrate multicore processors, such as the Xilinx Zynq-7000 series, which features an ARM dual-core Cortex-A9 processor. As multicore processors spread into FPGA, industrial and automotive applications, multiphase DC/DC converter usage continues to grow because of its ability to meet size and thermal constraints.
Multiphase converters have many advantages for powering multicore processors and FPGAs in several applications due to their reduced power losses, low output ripple and fast transient response. To better understand these advantages, let’s review the Xilinx® Zynq®7000 series 5W Small, Efficient, Low-Noise Power Solution reference design (TIDA-00574), which demonstrates how the LP8758-B0 multiphase converter can provide a low-ripple, compact-solution-size, FPGA power solution for industrial designs with effective sequencing (see Figure 1). This reference design can help to improve an engineer’s design cycle by providing a verified design and layout that meets the power requirements for several 5W Zynq FPGAs. The smallest components were chosen to minimize the amount of board space used, while still providing the performance needed to power FPGA rails.
In this design, the LMZ31503, a 3A step-down converter module, supports conversion from a 12V intermediate rail, while offering a small footprint, 2.8mm height and good efficiency over the load range. The LMZ31503 module features an integrated inductor and only one input and output capacitor. The LP8758-B0 is configured to allow multiple output rails to support the Zynq’s power requirements. For this FPGA’s lowest power rails, the design uses a tiny LP5907 low-dropout regulator (LDO)with the market’s smallest 0.65mm-by-0.65mm package, which features an enable pin for sequencing power rails.
The high switching frequency of the LP8758-B0 allows for an overall solution size of ~67mm² with 2010 or 2016 size inductors with 1mm height. This compact design allows for point-of-load capacitor placement very close to the FPGA supply pin to meet the required supply ripple of <30m (see Figure 2). The LP8758 evaluation module (EVM) also has the option to add several point-of-load capacitors to optimize for transient performance.
The multiple output LP8758-B0 offers integrated FETs, low bill of materials and features effective thermal performance because of its efficiency, as shown in Figure 3. The LP8758-B0 has the ability to sequence with multiple EN inputs, meaning an external sequencer such as the LM3880 is not required. At maximum power dissipation, the LP8758 only reaches a maximum temperature of 49°C. Due to the ability to maintain low temperatures, the TIDA-00574 design will be robust and provide reliability to power FPGA’s in space-constrained applications.
This design is only one of the many ways to use multiphase DC/DC converters to provide low-ripple, fast transient, and compact board space to power FPGAs or processors. To learn more ways to use small multiphase converters, read my upcoming posts.
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS” AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.
TI’s products are provided subject to TI’s Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for TI products.
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2023, Texas Instruments Incorporated