Product details

Number of channels 1 Total supply voltage (+5 V = 5, ±5 V = 10) (max) (V) 40 Total supply voltage (+5 V = 5, ±5 V = 10) (min) (V) 10 Rail-to-rail No GBW (typ) (MHz) 15 Slew rate (typ) (V/µs) 70 Vos (offset voltage at 25°C) (max) (mV) 10 Iq per channel (typ) (mA) 4.5 Vn at 1 kHz (typ) (nV√Hz) 15 Rating Catalog Operating temperature range (°C) 0 to 70 Offset drift (typ) (µV/°C) 6 Input bias current (max) (pA) 500000 CMRR (typ) (dB) 100 Iout (typ) (A) 0.02 Architecture Bipolar Input common mode headroom (to negative supply) (typ) (V) 3.5 Input common mode headroom (to positive supply) (typ) (V) -3.5 Output swing headroom (to negative supply) (typ) (V) 2 Output swing headroom (to positive supply) (typ) (V) -2
Number of channels 1 Total supply voltage (+5 V = 5, ±5 V = 10) (max) (V) 40 Total supply voltage (+5 V = 5, ±5 V = 10) (min) (V) 10 Rail-to-rail No GBW (typ) (MHz) 15 Slew rate (typ) (V/µs) 70 Vos (offset voltage at 25°C) (max) (mV) 10 Iq per channel (typ) (mA) 4.5 Vn at 1 kHz (typ) (nV√Hz) 15 Rating Catalog Operating temperature range (°C) 0 to 70 Offset drift (typ) (µV/°C) 6 Input bias current (max) (pA) 500000 CMRR (typ) (dB) 100 Iout (typ) (A) 0.02 Architecture Bipolar Input common mode headroom (to negative supply) (typ) (V) 3.5 Input common mode headroom (to positive supply) (typ) (V) -3.5 Output swing headroom (to negative supply) (typ) (V) 2 Output swing headroom (to positive supply) (typ) (V) -2
PDIP (P) 8 92.5083 mm² 9.81 x 9.43 SOIC (D) 8 29.4 mm² 4.9 x 6 SOP (PS) 8 48.36 mm² 6.2 x 7.8
  • Small Signal Bandwidth . . . 15 MHz Typ
  • Slew Rate . . . 50 V/µs Min
  • Bias Current . . . 250 nA Max (LM118, LM218)
  • Supply Voltage Range . . . ±5 V to ±20 V
  • Internal Frequency Compensation
  • Input and Output Overload Protection
  • Same Pin Assignments as General-Purpose Operational Amplifiers

The LM118 and LM218 are obsolete and are no longer supplied.

  • Small Signal Bandwidth . . . 15 MHz Typ
  • Slew Rate . . . 50 V/µs Min
  • Bias Current . . . 250 nA Max (LM118, LM218)
  • Supply Voltage Range . . . ±5 V to ±20 V
  • Internal Frequency Compensation
  • Input and Output Overload Protection
  • Same Pin Assignments as General-Purpose Operational Amplifiers

The LM118 and LM218 are obsolete and are no longer supplied.

The LM118, LM218, and LM318 are precision, fast operational amplifiers designed for applications requiring wide bandwidth and high slew rate. They feature a factor-of-ten increase in speed over general-purpose devices without sacrificing dc performance.

These operational amplifiers have internal unity-gain frequency compensation. This considerably simplifies their application because no external components are necessary for operation. However, unlike most internally compensated amplifiers, external frequency compensation may be added for optimum performance. For inverting applications, feed-forward compensation boosts the slew rate to over 150 V/µs and almost double the bandwidth. Overcompensation can be used with the amplifier for greater stability when maximum bandwidth is not needed. Further, a single capacitor can be added to reduce the settling time for 0.1% error band to under 1 µs.

The high speed and fast settling time of these operational amplifiers make them useful in A/D converters, oscillators, active filters, sample-and-hold circuits, and general-purpose amplifiers.

The LM118, LM218, and LM318 are precision, fast operational amplifiers designed for applications requiring wide bandwidth and high slew rate. They feature a factor-of-ten increase in speed over general-purpose devices without sacrificing dc performance.

These operational amplifiers have internal unity-gain frequency compensation. This considerably simplifies their application because no external components are necessary for operation. However, unlike most internally compensated amplifiers, external frequency compensation may be added for optimum performance. For inverting applications, feed-forward compensation boosts the slew rate to over 150 V/µs and almost double the bandwidth. Overcompensation can be used with the amplifier for greater stability when maximum bandwidth is not needed. Further, a single capacitor can be added to reduce the settling time for 0.1% error band to under 1 µs.

The high speed and fast settling time of these operational amplifiers make them useful in A/D converters, oscillators, active filters, sample-and-hold circuits, and general-purpose amplifiers.

Download View video with transcript Video

Similar products you might be interested in

open-in-new Compare alternates
Drop-in replacement with upgraded functionality to the compared device
OPA992 ACTIVE Single, 40-V, 10.6-MHz, rail-to-rail input/output, low-offset-voltage, low-noise op amp Single, 40-V, 10.6-MHz, rail-to-rail input/output, low-offset-voltage, low-noise op amp

Technical documentation

star =Top documentation for this product selected by TI
No results found. Please clear your search and try again.
View all 32
Type Title Date
* Data sheet High-Performance Operational Amplifiers datasheet (Rev. B) 12 Feb 2002
Application note AN-31 Amplifier Circuit Collection (Rev. D) 21 Oct 2020
E-book The Signal e-book: A compendium of blog posts on op amp design topics 28 Mar 2017
Application note Building an Op Amp With Bipolar Transistors, A Historical Application Note (Rev. A) 19 Sep 2016
Application note AN-256 Circuitry for Inexpensive Relative Humidity Measurement (Rev. B) 06 May 2013
Application note AN-262 Applying Dual and Quad FET Op Amps (Rev. B) 06 May 2013
Application note AN-260 A 20-Bit (1 ppm) Linear Slope-Integrating A/D Converter (Rev. B) 05 May 2013
Application note Super Matched Bipolar Transistor Pair Sets New Standards for Drift and Noise (Rev. B) 05 May 2013
Application note AN-20 An Applications Guide for Op Amps (Rev. C) 01 May 2013
Application note AN-29 IC Op Amp Beats FETs on Input Current (Rev. B) 01 May 2013
Application note AN-30 Log Converters (Rev. B) 01 May 2013
Application note AN-4 Monolithic Op Amp—The Universal Linear Component (Rev. B) 01 May 2013
Application note AN-79 IC Preamplifier Challenges Choppers on Drift (Rev. B) 01 May 2013
Application note AN-278 Designing with a New Super Fast Dual Norton Amplifier (Rev. B) 23 Apr 2013
Application note AN-263 Sine Wave Generation Techniques (Rev. C) 22 Apr 2013
Application note Effect of Heavy Loads on Accuracy and Linearity of Op Amp Circuits (Rev. B) 22 Apr 2013
Application note Applying a New Precision Op Amp 04 Oct 2004
Application note AN-46 The Phase Locked Loop IC as a Communication System Building Block 14 May 2004
Application note AN-480 A 40 MHz Programmable Video Op Amp 11 May 2004
Application note AN-446 A 150W IC Op Amp Simplifies Design of Power Circuits 10 May 2004
Application note AN-24 A Simplified Test Set for Op Amp Characterization 10 May 2004
Application note AN-32 FET Circuit Applications 10 May 2004
Application note AN-241 Working with High Impedance Op Amps 03 May 2004
Application note Audio Applications of Linear Integrated Circuits 02 May 2004
Application note Predicting Op Amp Slew Rate Limited Response 07 Oct 2002
Application note General Purpose Power Supply 03 Oct 2002
Application note Get Fast Stable Response From Improved Unity-Gain Followers 02 Oct 2002
Application note Get More Power Out of Dual or Quad Op-Amps 02 Oct 2002
Application note Instrumentational Amplifiers (See also LMP8358) 02 Oct 2002
Application note Low Drift Amplifiers 02 Oct 2002
Application note Precise Tri-Wave Generation 02 Oct 2002
Application note True RMS Detector 01 Oct 2002

Design & development

Please view the Design & development section on a desktop.

Ordering & quality

Information included:
  • RoHS
  • REACH
  • Device marking
  • Lead finish/Ball material
  • MSL rating/Peak reflow
  • MTBF/FIT estimates
  • Material content
  • Qualification summary
  • Ongoing reliability monitoring
Information included:
  • Fab location
  • Assembly location

Support & training

TI E2E™ forums with technical support from TI engineers

Content is provided "as is" by TI and community contributors and does not constitute TI specifications. See terms of use.

If you have questions about quality, packaging or ordering TI products, see TI support. ​​​​​​​​​​​​​​

Videos