TL594

ACTIVE

40V, 0.2A 300KHz PWM controller with UVLO

Product details

Vin (max) (V) 40 Operating temperature range (°C) -40 to 85 Control mode Voltage Topology Boost Rating Catalog Features Adjustable switching frequency, Dead time control, Error amplifier, Multi-topology Duty cycle (max) (%) 45
Vin (max) (V) 40 Operating temperature range (°C) -40 to 85 Control mode Voltage Topology Boost Rating Catalog Features Adjustable switching frequency, Dead time control, Error amplifier, Multi-topology Duty cycle (max) (%) 45
PDIP (N) 16 181.42 mm² 19.3 x 9.4 SOIC (D) 16 59.4 mm² 9.9 x 6 SOP (NS) 16 79.56 mm² 10.2 x 7.8 TSSOP (PW) 16 32 mm² 5 x 6.4
  • Complete PWM Power-Control Circuitry
  • Uncommitted Outputs for 200-mA Sink or Source Current
  • Output Control Selects Single-Ended or Push-Pull Operation
  • Internal Circuitry Prohibits Double Pulse at Either Output
  • Variable Dead Time Provides Control Over Total Range
  • Internal Regulator Provides a Stable 5-V Reference Supply Trimmed to 1%
  • Circuit Architecture Allows Easy Synchronization
  • Undervoltage Lockout (UVLO) for Low-VCC Conditions
  • Complete PWM Power-Control Circuitry
  • Uncommitted Outputs for 200-mA Sink or Source Current
  • Output Control Selects Single-Ended or Push-Pull Operation
  • Internal Circuitry Prohibits Double Pulse at Either Output
  • Variable Dead Time Provides Control Over Total Range
  • Internal Regulator Provides a Stable 5-V Reference Supply Trimmed to 1%
  • Circuit Architecture Allows Easy Synchronization
  • Undervoltage Lockout (UVLO) for Low-VCC Conditions

The TL594 device incorporates all the functions required in the construction of a pulse-width-modulation (PWM) control circuit on a single chip. Designed primarily for power-supply control, this device offers the systems engineer the flexibility to tailor the power-supply control circuitry to a specific application.

The TL594 device contains two error amplifiers, an on-chip adjustable oscillator, a dead-time control (DTC) comparator, a pulse-steering control flip-flop, a 5-V regulator with a precision of 1%, an undervoltage lockout control circuit, and output control circuitry.

The uncommitted output transistors provide either common-emitter or emitter-follower output capability. Each device provides for push-pull or single-ended output operation, with selection by means of the output-control function. The architecture of these devices prohibits the possibility of either output being pulsed twice during push-pull operation. The undervoltage lockout control circuit locks the outputs off until the internal circuitry is operational.

The TL594 device incorporates all the functions required in the construction of a pulse-width-modulation (PWM) control circuit on a single chip. Designed primarily for power-supply control, this device offers the systems engineer the flexibility to tailor the power-supply control circuitry to a specific application.

The TL594 device contains two error amplifiers, an on-chip adjustable oscillator, a dead-time control (DTC) comparator, a pulse-steering control flip-flop, a 5-V regulator with a precision of 1%, an undervoltage lockout control circuit, and output control circuitry.

The uncommitted output transistors provide either common-emitter or emitter-follower output capability. Each device provides for push-pull or single-ended output operation, with selection by means of the output-control function. The architecture of these devices prohibits the possibility of either output being pulsed twice during push-pull operation. The undervoltage lockout control circuit locks the outputs off until the internal circuitry is operational.

Download View video with transcript Video

Technical documentation

star =Top documentation for this product selected by TI
No results found. Please clear your search and try again.
View all 5
Type Title Date
* Data sheet TL594 Pulse-Width-Modulation Control Circuit datasheet (Rev. I) PDF | HTML 30 Sep 2016
Application note Understanding Inverting Buck-Boost Power Stages in Switch Mode Power Supplies (Rev. B) 12 Mar 2019
Selection guide Power Management Guide 2018 (Rev. R) 25 Jun 2018
Application note Understanding Boost Power Stages In Switchmode Power Supplies 04 Mar 1999
Application note Understanding Buck Power Stages In Switchmode Power Supplies 04 Mar 1999

Design & development

For additional terms or required resources, click any title below to view the detail page where available.

Reference designs

PMP40182 — Bi-Directional Battery Initialization System Power Board Reference Design

This reference design is a battery initialization reference design solution for automotive and battery applications. The module enables a high efficiency single stage conversion for charging and discharging the battery. This design features a 0.1% accurate current control loop using the high (...)
Test report: PDF
Schematic: PDF
Package Pins CAD symbols, footprints & 3D models
PDIP (N) 16 Ultra Librarian
SOIC (D) 16 Ultra Librarian
SOP (NS) 16 Ultra Librarian
TSSOP (PW) 16 Ultra Librarian

Ordering & quality

Information included:
  • RoHS
  • REACH
  • Device marking
  • Lead finish/Ball material
  • MSL rating/Peak reflow
  • MTBF/FIT estimates
  • Material content
  • Qualification summary
  • Ongoing reliability monitoring
Information included:
  • Fab location
  • Assembly location

Support & training

TI E2E™ forums with technical support from TI engineers

Content is provided "as is" by TI and community contributors and does not constitute TI specifications. See terms of use.

If you have questions about quality, packaging or ordering TI products, see TI support. ​​​​​​​​​​​​​​

Videos