TLV9354-Q1

ACTIVE

Automotive, quad, 40-V 3.5-MHz low-power operational amplifier

Product details

Number of channels 4 Total supply voltage (+5 V = 5, ±5 V = 10) (max) (V) 40 Total supply voltage (+5 V = 5, ±5 V = 10) (min) (V) 4.5 Rail-to-rail In to V-, Out GBW (typ) (MHz) 3.5 Slew rate (typ) (V/µs) 20 Vos (offset voltage at 25°C) (max) (mV) 1.8 Iq per channel (typ) (mA) 0.65 Vn at 1 kHz (typ) (nV√Hz) 15 Rating Automotive Operating temperature range (°C) -40 to 125 Offset drift (typ) (µV/°C) 1.5 Features Cost Optimized, EMI Hardened, MUX Friendly, Small Size CMRR (typ) (dB) 110 Iout (typ) (A) 0.06 Architecture CMOS Input common mode headroom (to negative supply) (typ) (V) -0.1 Input common mode headroom (to positive supply) (typ) (V) 0.1 Output swing headroom (to negative supply) (typ) (V) 0.025 Output swing headroom (to positive supply) (typ) (V) -0.025
Number of channels 4 Total supply voltage (+5 V = 5, ±5 V = 10) (max) (V) 40 Total supply voltage (+5 V = 5, ±5 V = 10) (min) (V) 4.5 Rail-to-rail In to V-, Out GBW (typ) (MHz) 3.5 Slew rate (typ) (V/µs) 20 Vos (offset voltage at 25°C) (max) (mV) 1.8 Iq per channel (typ) (mA) 0.65 Vn at 1 kHz (typ) (nV√Hz) 15 Rating Automotive Operating temperature range (°C) -40 to 125 Offset drift (typ) (µV/°C) 1.5 Features Cost Optimized, EMI Hardened, MUX Friendly, Small Size CMRR (typ) (dB) 110 Iout (typ) (A) 0.06 Architecture CMOS Input common mode headroom (to negative supply) (typ) (V) -0.1 Input common mode headroom (to positive supply) (typ) (V) 0.1 Output swing headroom (to negative supply) (typ) (V) 0.025 Output swing headroom (to positive supply) (typ) (V) -0.025
SOIC (D) 14 51.9 mm² 8.65 x 6 SOT-23-THN (DYY) 14 13.692 mm² 4.2 x 3.26 TSSOP (PW) 14 32 mm² 5 x 6.4
  • Low offset voltage: ±350µV
  • Low offset voltage drift: ±1.5µV/°C
  • Low noise: 15nV/√Hz at 1kHz
  • High common-mode rejection: 110dB
  • Low bias current: ±10pA
  • Rail-to-rail output
  • MUX-friendly/comparator inputs
    • Amplifier operates with differential inputs up to supply rail
    • Amplifier can be used in open-loop or as comparator
  • Wide bandwidth: 3.5MHz GBW
  • High slew rate: 20V/µs
  • Low quiescent current: 600µA per amplifier
  • Wide supply: ±2.25V to ±20V, 4.5V to 40V
  • Robust EMIRR performance: EMI/RFI filters on input pins
  • Low offset voltage: ±350µV
  • Low offset voltage drift: ±1.5µV/°C
  • Low noise: 15nV/√Hz at 1kHz
  • High common-mode rejection: 110dB
  • Low bias current: ±10pA
  • Rail-to-rail output
  • MUX-friendly/comparator inputs
    • Amplifier operates with differential inputs up to supply rail
    • Amplifier can be used in open-loop or as comparator
  • Wide bandwidth: 3.5MHz GBW
  • High slew rate: 20V/µs
  • Low quiescent current: 600µA per amplifier
  • Wide supply: ±2.25V to ±20V, 4.5V to 40V
  • Robust EMIRR performance: EMI/RFI filters on input pins

The TLV935x-Q1 family (TLV9351-Q1, TLV9352-Q1, and TLV9354-Q1) is a family of 40V cost-optimized automotive operational amplifiers.

These devices offer strong DC and AC specifications, including rail-to-rail output, low offset (±350µV, typical), low offset drift (±1.5µV/°C, typical), and 3.5MHz bandwidth.

Unique features such as differential input-voltage range to the supply rail, high output current (±60mA), and high slew rate (20V/µs) make the TLV935x-Q1 a robust operational amplifier for high-voltage, cost-sensitive applications.

The TLV935x-Q1 family of op amps is available in standard packages and is specified from –40°C to 125°C.

The TLV935x-Q1 family (TLV9351-Q1, TLV9352-Q1, and TLV9354-Q1) is a family of 40V cost-optimized automotive operational amplifiers.

These devices offer strong DC and AC specifications, including rail-to-rail output, low offset (±350µV, typical), low offset drift (±1.5µV/°C, typical), and 3.5MHz bandwidth.

Unique features such as differential input-voltage range to the supply rail, high output current (±60mA), and high slew rate (20V/µs) make the TLV935x-Q1 a robust operational amplifier for high-voltage, cost-sensitive applications.

The TLV935x-Q1 family of op amps is available in standard packages and is specified from –40°C to 125°C.

Download View video with transcript Video

Similar products you might be interested in

open-in-new Compare alternates
Pin-for-pin with same functionality to the compared device
OPA4991-Q1 ACTIVE Automotive, quad, 40-V, 4.5-MHz, low-power operational amplifier Rail-to-rail I/O, higher GBW (4.5 MHz), faster slew rate (21 V/us), lower offset voltage (0.75 mV), lower power (0.56 mA), lower noise (10.8 nV/√Hz)

Technical documentation

star =Top documentation for this product selected by TI
No results found. Please clear your search and try again.
View all 1
Type Title Date
* Data sheet TLV935x-Q1 3.5MHz, 40V, RRO, MUX-Friendly Automotive Operational Amplifier for Cost-Sensitive Systems datasheet (Rev. E) PDF | HTML 19 Mar 2024

Design & development

For additional terms or required resources, click any title below to view the detail page where available.

Evaluation board

AMP-PDK-EVM — Amplifier performance development kit evaluation module

The amplifier performance development kit (PDK) is an evaluation module (EVM) kit to test common operational amplifier (op amp) parameters and is compatible with most op amps and comparators. The EVM kit offers a main board with several socketed daughtercard options to fit package needs, allowing (...)

User guide: PDF | HTML
Simulation model

TLV9352 PSpice Model (Rev. B)

SBOMB56B.ZIP (21 KB) - PSpice Model
Simulation model

TLV9352 TINA-TI Reference Design

SBOMB54.ZIP (12 KB) - TINA-TI Reference Design
Simulation model

TLV9352 TINA-TI SPICE Model

SBOMB55.ZIP (4 KB) - TINA-TI Spice Model
Calculation tool

ANALOG-ENGINEER-CALC — Analog engineer's calculator

The analog engineer’s calculator is designed to speed up many of the repetitive calculations that analog circuit design engineers use on a regular basis. This PC-based tool provides a graphical interface with a list of various common calculations ranging from setting operational-amplifier (...)
Design tool

CIRCUIT060013 — Inverting amplifier with T-network feedback circuit

This design inverts the input signal, VIN, and applies a signal gain of 1000 V/V or 60 dB. The inverting amplifier with T-feedback network can be used to obtain a high gain without a small value for R4 or very large values for the feedback resistors.
Design tool

CIRCUIT060015 — Adjustable reference voltage circuit

This circuit combines an inverting and non-inverting amplifier to make a reference voltage adjustable from the negative of the input voltage up to the input voltage. Gain can be added to increase the maximum negative reference level.
Design tool

CIRCUIT060074 — High-side current sensing with comparator circuit

This high-side, current sensing solution uses one comparator with a rail-to-rail input common mode range to create an over-current alert (OC-Alert) signal at the comparator output (COMP OUT) if the load current rises above 1 A. The OC-Alert signal in this implementation is active low. So when the (...)
Simulation tool

PSPICE-FOR-TI — PSpice® for TI design and simulation tool

PSpice® for TI is a design and simulation environment that helps evaluate functionality of analog circuits. This full-featured, design and simulation suite uses an analog analysis engine from Cadence®. Available at no cost, PSpice for TI includes one of the largest model libraries in the (...)
Simulation tool

TINA-TI — SPICE-based analog simulation program

TINA-TI provides all the conventional DC, transient and frequency domain analysis of SPICE and much more. TINA has extensive post-processing capability that allows you to format results the way you want them. Virtual instruments allow you to select input waveforms and probe circuit nodes voltages (...)
User guide: PDF
Package Pins CAD symbols, footprints & 3D models
SOIC (D) 14 Ultra Librarian
SOT-23-THN (DYY) 14 Ultra Librarian
TSSOP (PW) 14 Ultra Librarian

Ordering & quality

Information included:
  • RoHS
  • REACH
  • Device marking
  • Lead finish/Ball material
  • MSL rating/Peak reflow
  • MTBF/FIT estimates
  • Material content
  • Qualification summary
  • Ongoing reliability monitoring
Information included:
  • Fab location
  • Assembly location

Support & training

TI E2E™ forums with technical support from TI engineers

Content is provided "as is" by TI and community contributors and does not constitute TI specifications. See terms of use.

If you have questions about quality, packaging or ordering TI products, see TI support. ​​​​​​​​​​​​​​

Videos