SN74AHC244-EP

ACTIVE

Product details

Technology family AHC Supply voltage (min) (V) 2 Supply voltage (max) (V) 5.5 Number of channels 8 IOL (max) (mA) 50 Supply current (max) (µA) 40 IOH (max) (mA) -50 Input type Standard CMOS Output type 3-State Features Balanced outputs, Over-voltage tolerant inputs, Very high speed (tpd 5-10ns) Rating HiRel Enhanced Product Operating temperature range (°C) -55 to 125
Technology family AHC Supply voltage (min) (V) 2 Supply voltage (max) (V) 5.5 Number of channels 8 IOL (max) (mA) 50 Supply current (max) (µA) 40 IOH (max) (mA) -50 Input type Standard CMOS Output type 3-State Features Balanced outputs, Over-voltage tolerant inputs, Very high speed (tpd 5-10ns) Rating HiRel Enhanced Product Operating temperature range (°C) -55 to 125
SOIC (DW) 20 131.84 mm² 12.8 x 10.3 TSSOP (PW) 20 41.6 mm² 6.5 x 6.4
  • Controlled Baseline
    • One Assembly/Test Site, One Fabrication Site
  • Extended Temperature Performance of –55°C to 125°C
  • Enhanced Diminishing Manufacturing Sources (DMS) Support
  • Enhanced Product-Change Notification
  • Qualification Pedigree
  • EPIC™ (Enhanced-Performance Implanted CMOS) Process
  • Operating Range 2-V to 5.5-V VCC
  • Latch-Up Performance Exceeds 250 mA Per JESD 17
  • ESD Protection Exceeds 1500 V Per MIL-STD-833, Method 3015; Exceeds 150 V Using Machine Model (C = 200 pF, R = 0)

Component qualification in accordance with JEDEC and industry standards to ensure reliable operation over an extended temperature range. This includes, but is not limited to, Highly Accelerated Stress Test (HAST) or biased 85/85, temperature cycle, autoclave or unbiased HAST, electromigration, bond intermetallic life, and mold compound life. Such qualification testing should not be viewed as justifying use of this component beyond specified performance and environmental limits.

EPIC is a trademark of Texas Instruments.

  • Controlled Baseline
    • One Assembly/Test Site, One Fabrication Site
  • Extended Temperature Performance of –55°C to 125°C
  • Enhanced Diminishing Manufacturing Sources (DMS) Support
  • Enhanced Product-Change Notification
  • Qualification Pedigree
  • EPIC™ (Enhanced-Performance Implanted CMOS) Process
  • Operating Range 2-V to 5.5-V VCC
  • Latch-Up Performance Exceeds 250 mA Per JESD 17
  • ESD Protection Exceeds 1500 V Per MIL-STD-833, Method 3015; Exceeds 150 V Using Machine Model (C = 200 pF, R = 0)

Component qualification in accordance with JEDEC and industry standards to ensure reliable operation over an extended temperature range. This includes, but is not limited to, Highly Accelerated Stress Test (HAST) or biased 85/85, temperature cycle, autoclave or unbiased HAST, electromigration, bond intermetallic life, and mold compound life. Such qualification testing should not be viewed as justifying use of this component beyond specified performance and environmental limits.

EPIC is a trademark of Texas Instruments.

This octal buffer/driver is designed specifically to improve the performance and density of 3-state memory-address drivers, clock drivers, and bus-oriented receivers and transmitters.

The SN74AHC244 is organized as two 4-bit buffers/line drivers with separate output-enable (OE)\ inputs. When OE\ is low, the device passes data from the A inputs to the Y outputs. When OE\ is high, the outputs are in the high-impedance state.

To ensure the high-impedance state during power up or power down, OE\ should be tied to VCC through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

This octal buffer/driver is designed specifically to improve the performance and density of 3-state memory-address drivers, clock drivers, and bus-oriented receivers and transmitters.

The SN74AHC244 is organized as two 4-bit buffers/line drivers with separate output-enable (OE)\ inputs. When OE\ is low, the device passes data from the A inputs to the Y outputs. When OE\ is high, the outputs are in the high-impedance state.

To ensure the high-impedance state during power up or power down, OE\ should be tied to VCC through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

Download View video with transcript Video

Similar products you might be interested in

open-in-new Compare alternates
Pin-for-pin with same functionality to the compared device
SN74LV244B-EP ACTIVE Enhanced product eight-channel 2-V to 5.5-V buffers with tri-state outputs High reliability for enhanced products
Same functionality with different pin-out to the compared device
SN74AC244-EP ACTIVE Enhanced product 8-ch, 2-V to 6-V buffers with 3-state outputs Voltage range (2V to 6V), average drive strength (24mA), average propagation delay (7ns)

Technical documentation

star =Top documentation for this product selected by TI
No results found. Please clear your search and try again.
View all 22
Type Title Date
* Data sheet SN74AHC244-EP datasheet (Rev. A) 30 May 2003
* VID SN74AHC244-EP VID V6203649 21 Jun 2016
* Radiation & reliability report SN74AHC244MPWREP Reliability Report 15 Mar 2012
Application note Implications of Slow or Floating CMOS Inputs (Rev. E) 26 Jul 2021
Selection guide Little Logic Guide 2018 (Rev. G) 06 Jul 2018
Selection guide Logic Guide (Rev. AB) 12 Jun 2017
Application note How to Select Little Logic (Rev. A) 26 Jul 2016
Application note Understanding and Interpreting Standard-Logic Data Sheets (Rev. C) 02 Dec 2015
User guide LOGIC Pocket Data Book (Rev. B) 16 Jan 2007
Product overview Design Summary for WCSP Little Logic (Rev. B) 04 Nov 2004
Application note Semiconductor Packing Material Electrostatic Discharge (ESD) Protection 08 Jul 2004
Application note Selecting the Right Level Translation Solution (Rev. A) 22 Jun 2004
Application note Advanced High-Speed CMOS (AHC) Logic Family (Rev. C) 02 Dec 2002
Application note Texas Instruments Little Logic Application Report 01 Nov 2002
Application note TI IBIS File Creation, Validation, and Distribution Processes 29 Aug 2002
Design guide AHC/AHCT Designer's Guide February 2000 (Rev. D) 24 Feb 2000
Application note Benefits & Issues of Migrating 5-V and 3.3-V Logic to Lower-Voltage Supplies (Rev. A) 08 Sep 1999
Product overview Military Advanced High-Speed CMOS Logic (AHC/AHCT) (Rev. C) 01 Apr 1998
Application note Migration From 3.3-V To 2.5-V Power Supplies For Logic Devices 01 Dec 1997
Application note Bus-Interface Devices With Output-Damping Resistors Or Reduced-Drive Outputs (Rev. A) 01 Aug 1997
Application note CMOS Power Consumption and CPD Calculation (Rev. B) 01 Jun 1997
Application note Live Insertion 01 Oct 1996

Design & development

For additional terms or required resources, click any title below to view the detail page where available.

Package Pins CAD symbols, footprints & 3D models
SOIC (DW) 20 Ultra Librarian
TSSOP (PW) 20 Ultra Librarian

Ordering & quality

Information included:
  • RoHS
  • REACH
  • Device marking
  • Lead finish/Ball material
  • MSL rating/Peak reflow
  • MTBF/FIT estimates
  • Material content
  • Qualification summary
  • Ongoing reliability monitoring
Information included:
  • Fab location
  • Assembly location

Support & training

TI E2E™ forums with technical support from TI engineers

Content is provided "as is" by TI and community contributors and does not constitute TI specifications. See terms of use.

If you have questions about quality, packaging or ordering TI products, see TI support. ​​​​​​​​​​​​​​

Videos