SBAS771D June   2017  – October 2024 AMC1303E0510 , AMC1303E0520 , AMC1303E2510 , AMC1303E2520 , AMC1303M0510 , AMC1303M0520 , AMC1303M2510 , AMC1303M2520

PRODUCTION DATA  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Device Comparison Table
  6. Pin Configuration and Functions
  7. Specifications
    1. 6.1  Absolute Maximum Ratings
    2. 6.2  ESD Ratings
    3. 6.3  Recommended Operating Conditions
    4. 6.4  Thermal Information
    5. 6.5  Power Ratings
    6. 6.6  Insulation Specifications
    7. 6.7  Safety-Related Certifications
    8. 6.8  Safety Limiting Values
    9. 6.9  Electrical Characteristics: AMC1303x05x
    10. 6.10 Electrical Characteristics: AMC1303x25x
    11. 6.11 Switching Characteristics
    12. 6.12 Timing Diagrams
    13. 6.13 Insulation Characteristics Curves
    14. 6.14 Typical Characteristics
  8. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1 Analog Input
      2. 7.3.2 Modulator
      3. 7.3.3 Isolation Channel Signal Transmission
      4. 7.3.4 Digital Output
      5. 7.3.5 Manchester Coding Feature
    4. 7.4 Device Functional Modes
      1. 7.4.1 Fail-Safe Output
      2. 7.4.2 Output Behavior in Case of a Full-Scale Input
  9. Application and Implementation
    1. 8.1 Application Information
      1. 8.1.1 Digital Filter Usage
    2. 8.2 Typical Applications
      1. 8.2.1 Frequency Inverter Application
        1. 8.2.1.1 Design Requirements
        2. 8.2.1.2 Detailed Design Procedure
        3. 8.2.1.3 Application Curves
      2. 8.2.2 Isolated Voltage Sensing
        1. 8.2.2.1 Design Requirements
        2. 8.2.2.2 Detailed Design Procedure
        3. 8.2.2.3 Application Curve
      3. 8.2.3 Best Design Practices
    3. 8.3 Power Supply Recommendations
    4. 8.4 Layout
      1. 8.4.1 Layout Guidelines
      2. 8.4.2 Layout Example
  10. Device and Documentation Support
    1. 9.1 Device Support
      1. 9.1.1 Device Nomenclature
        1. 9.1.1.1 Isolation Glossary
    2. 9.2 Documentation Support
      1. 9.2.1 Related Documentation
    3. 9.3 Receiving Notification of Documentation Updates
    4. 9.4 Support Resources
    5. 9.5 Trademarks
    6. 9.6 Electrostatic Discharge Caution
    7. 9.7 Glossary
  11. 10Revision History
  12. 11Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Digital Filter Usage

The modulator generates a bitstream that is processed by a digital filter to obtain a digital word similar to a conversion result of a conventional analog-to-digital converter (ADC). A very simple filter, shown in Equation 2, built with minimal effort and hardware, is a sinc3-type filter:

 

Equation 2. AMC1303E0510 AMC1303M0510 AMC1303E0520 AMC1303M0520   AMC1303E2510 AMC1303M2510 AMC1303E2520 AMC1303M2520

This filter provides the best output performance at the lowest hardware size (count of digital gates) for a second-order modulator. All the characterization in this document is done with a sinc3 filter with an oversampling ratio (OSR) of 256 and an output word size of 16 bits.

The effective number of bits (ENOB) is often used to compare the performance of ADCs and ΔΣ modulators. Figure 8-1 shows the ENOB of the AMC1303 with different oversampling ratios. In this document, Equation 3 calculates this number from the SINAD by using the following equation:

 

Equation 3. SINAD = 1.76 + 6.02dB × ENOB
AMC1303E0510 AMC1303M0510 AMC1303E0520 AMC1303M0520   AMC1303E2510 AMC1303M2510 AMC1303E2520 AMC1303M2520 Measured Effective Number of Bits versus Oversampling Ratio
 
Figure 8-1 Measured Effective Number of Bits versus Oversampling Ratio

An example code for implementing a sinc3 filter in an FPGA is discussed the Combining ADS1202 with FPGA Digital Filter for Current Measurement in Motor Control Applications application note, available for download at www.ti.com.