SBAS771D June   2017  – October 2024 AMC1303E0510 , AMC1303E0520 , AMC1303E2510 , AMC1303E2520 , AMC1303M0510 , AMC1303M0520 , AMC1303M2510 , AMC1303M2520

PRODUCTION DATA  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Device Comparison Table
  6. Pin Configuration and Functions
  7. Specifications
    1. 6.1  Absolute Maximum Ratings
    2. 6.2  ESD Ratings
    3. 6.3  Recommended Operating Conditions
    4. 6.4  Thermal Information
    5. 6.5  Power Ratings
    6. 6.6  Insulation Specifications
    7. 6.7  Safety-Related Certifications
    8. 6.8  Safety Limiting Values
    9. 6.9  Electrical Characteristics: AMC1303x05x
    10. 6.10 Electrical Characteristics: AMC1303x25x
    11. 6.11 Switching Characteristics
    12. 6.12 Timing Diagrams
    13. 6.13 Insulation Characteristics Curves
    14. 6.14 Typical Characteristics
  8. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1 Analog Input
      2. 7.3.2 Modulator
      3. 7.3.3 Isolation Channel Signal Transmission
      4. 7.3.4 Digital Output
      5. 7.3.5 Manchester Coding Feature
    4. 7.4 Device Functional Modes
      1. 7.4.1 Fail-Safe Output
      2. 7.4.2 Output Behavior in Case of a Full-Scale Input
  9. Application and Implementation
    1. 8.1 Application Information
      1. 8.1.1 Digital Filter Usage
    2. 8.2 Typical Applications
      1. 8.2.1 Frequency Inverter Application
        1. 8.2.1.1 Design Requirements
        2. 8.2.1.2 Detailed Design Procedure
        3. 8.2.1.3 Application Curves
      2. 8.2.2 Isolated Voltage Sensing
        1. 8.2.2.1 Design Requirements
        2. 8.2.2.2 Detailed Design Procedure
        3. 8.2.2.3 Application Curve
      3. 8.2.3 Best Design Practices
    3. 8.3 Power Supply Recommendations
    4. 8.4 Layout
      1. 8.4.1 Layout Guidelines
      2. 8.4.2 Layout Example
  10. Device and Documentation Support
    1. 9.1 Device Support
      1. 9.1.1 Device Nomenclature
        1. 9.1.1.1 Isolation Glossary
    2. 9.2 Documentation Support
      1. 9.2.1 Related Documentation
    3. 9.3 Receiving Notification of Documentation Updates
    4. 9.4 Support Resources
    5. 9.5 Trademarks
    6. 9.6 Electrostatic Discharge Caution
    7. 9.7 Glossary
  11. 10Revision History
  12. 11Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Power Supply Recommendations

In a typical frequency-inverter application, the device high-side power supply (AVDD) is directly derived from the floating power supply of the upper gate driver. For lowest system-level cost, use a Zener diode to limit the voltage to 5V or 3.3V (±10%). Alternatively, use a low-cost, low-drop regulator (LDO), for example the LM317-N, to adjust the supply voltage level and minimize noise on the power-supply node. Use a 0.1µF, low-ESR decoupling capacitor to filter this power-supply path. Place this capacitor (C2 in Figure 8-8) as close as possible to the AVDD pin of the AMC1303 for best performance. Further, use an additional capacitor with a value in the range of 2.2µF to 10µF.

The floating ground reference (AGND) is derived from the end of the shunt resistor, which is connected to the negative input (AINN) of the device. If using a four-pin shunt, connect the inputs of the device to the sense terminals of the shunt. Route the ground connection as a separate trace to the shunt to minimize offset and improve accuracy.

To decouple the digital power supply on the controller side, use a 0.1µF and 2.2µF capacitor placed as close to the DVDD pin of the AMC1303 as possible.

AMC1303E0510 AMC1303M0510 AMC1303E0520 AMC1303M0520   AMC1303E2510 AMC1303M2510 AMC1303E2520 AMC1303M2520 Decoupling the AMC1303 Figure 8-8 Decoupling the AMC1303