SLOA101B August 2002 – May 2016 SN55HVD233-SEP , SN65HVDA1040A-Q1 , SN65HVDA1050A-Q1 , SN65HVDA540-5-Q1 , SN65HVDA540-Q1 , SN65HVDA541-5-Q1 , SN65HVDA541-Q1 , SN65HVDA542-5-Q1 , SN65HVDA542-Q1
CAN is an International Standardization Organization (ISO) defined serial communications bus originally developed for the automotive industry to replace the complex wiring harness with a two-wire bus. The specification calls for high immunity to electrical interference and the ability to self-diagnose and repair data errors. These features have led to CAN’s popularity in a variety of industries including building automation, medical, and manufacturing.
The CAN communications protocol, ISO-11898: 2003, describes how information is passed between devices on a network and conforms to the Open Systems Interconnection (OSI) model that is defined in terms of layers. Actual communication between devices connected by the physical medium is defined by the physical layer of the model. The ISO 11898 architecture defines the lowest two layers of the seven layer OSI/ISO model as the data-link layer and physical layer in Figure 1.
In Figure 1, the application layer establishes the communication link to an upper-level application specific protocol such as the vendor-independent CANopen™ protocol. This protocol is supported by the international users and manufacturers group, CAN in Automation (CiA). Additional CAN information is located at the CiA Web site, can-cia.de. Many protocols are dedicated to particular applications like industrial automation, diesel engines, or aviation. Other examples of industry-standard, CAN-based protocols are KVASER's CAN Kingdom and Rockwell Automation's DeviceNet™.