SLUUC37C july   2019  – august 2023 BQ75614-Q1 , BQ79616 , BQ79616-Q1 , BQ79656-Q1

 

  1.   1
  2.   BQ79616-Q1 and BQ75614-Q1 Evaluation Modules
  3.   Trademarks
  4.   General Texas Instruments High Voltage Evaluation (TI HV EVM) User Safety Guidelines
  5. General Description
    1. 1.1 Key Features
    2. 1.2 Key Electrical Parameters
  6. Theory of Operation - Stackable BQ79616EVM
    1. 2.1 Single Board
    2. 2.2 Stacked Systems
    3. 2.3 Configuring the BQ79616-Q1 EVM to be used for Lower Cell Count Applications
  7. Theory of Operation - Standalone BQ75614EVM
  8. Connectors
    1. 4.1 Primary Input and Output Connectors
      1. 4.1.1 Jumper Placements
      2. 4.1.2 Battery Connector
      3. 4.1.3 Host Interface
      4. 4.1.4 GPIO or Thermistor Inputs
      5. 4.1.5 High-Side and Low-Side Communications
  9. Quick Start Guide
    1. 5.1 Required Devices for using the Example Code
    2. 5.2 Power Connections
      1. 5.2.1 On-Board Resistor Ladder - Power Supply
      2. 5.2.2 Using Actual Battery Cells
    3. 5.3 Connecting the EVM to TMS570 LaunchPad
    4. 5.4 Stacking BQ79616EVMs
    5. 5.5 Software
    6. 5.6 GUI
      1. 5.6.1 GUI UART Connection
  10. Physical Dimensions
    1. 6.1 Board Dimensions
    2. 6.2 Board Mounting
  11. BQ79616EVM Schematic, Assembly, Layout, and BOM
    1. 7.1 Schematic
    2. 7.2 Assembly
    3. 7.3 Layout
    4. 7.4 BQ79616EVM-021 Bill of Materials (BOM)
  12. BQ75614EVM Schematic, Assembly, Layout, and BOM
    1. 8.1 Schematic
    2. 8.2 Assembly
    3. 8.3 Layout
    4. 8.4 BQ75614EVM Bill of Materials (BOM)
  13. BQ79656EVM Schematic, Assembly, Layout, and BOM
    1. 9.1 Schematic
    2. 9.2 Assembly
    3. 9.3 Layout
    4. 9.4 BQ79656EVM Bill of Materials (BOM)
  14. 10Revision History

On-Board Resistor Ladder - Power Supply

Each EVM utilizes an on-board resistor ladder to simplify the evaluation process. Each of the sixteen resistors is nominally 100 Ω, resulting in roughly one-sixteenth of the module voltage at each cell connection. For the BQ75614EVM, this is one-fourteenth the module voltage as the board does not use the top two cells. By default, all actuators of S1, S2 are positioned closest to the IC, which is the "ON" or "closed" state. In this state, all of the resistors are connected to the EVM sense and balance connections and allow easy start up with a DC voltage connection across VSTACK and GND.

To simulate connected cells to the sense and balance connections (using a power supply), ALL switch actuators on S1, S2 must be moved away from the module connector J15 if not already done. Moving the actuators in this manner connects the EVM to the resistor ladder, and allows for simulated cell measurements.