SLVAFU8 July   2024 TPSI2072-Q1 , TPSI2140-Q1 , TPSI3050 , TPSI3050-Q1 , TPSI3052 , TPSI3052-Q1 , TPSI3100 , TPSI3100-Q1

 

  1.   1
  2.   Abstract
  3.   Trademarks
  4. 1Introduction
  5. 2What Are Solid-State Relays?
    1. 2.1 History
      1. 2.1.1 Electromechanical Relays
      2. 2.1.2 Solid-State Relays
    2. 2.2 Isolation Technologies
      1. 2.2.1 Isolation Specifications
    3. 2.3 Relay Evolution
  6. 3Failure Mechanisms
    1. 3.1 Arcing in an Electromechanical Relay
    2. 3.2 Photo-degradation in Photo Relays
    3. 3.3 Partial Discharge
    4. 3.4 Time-Dependent Dielectric Breakdown in Capacitive and Inductive Isolation
  7. 4Electromechanical vs. Photo vs. Capacitive or Inductive
    1. 4.1 Electromechanical Relays
      1. 4.1.1 Advantages
        1. 4.1.1.1 No Leakage Current
      2. 4.1.2 Limitations
        1. 4.1.2.1 Switching Speed
        2. 4.1.2.2 Package Size
    2. 4.2 Photo or Optical Relays
      1. 4.2.1 Advantages
        1. 4.2.1.1 Lower EMI
      2. 4.2.2 Limitations
        1. 4.2.2.1 Limited Temperature Range
    3. 4.3 Capacitive or Inductive Based Relays
      1. 4.3.1 Advantages
        1. 4.3.1.1 Auxiliary Power
        2. 4.3.1.2 Bidirectional Communication
      2. 4.3.2 Limitations
        1. 4.3.2.1 EMI
    4. 4.4 Overall Comparison
  8. 5Summary
  9. 6References

Solid-State Relays

Solid-state relays were developed to combat these failures, with the photo relay being one of the first solid-state relays to emerge as the leading design. Photo relays improved reliability by integrating MOSFETS within the device. As a result, photo relays allow for a higher amount of switching cycles, though are subject to failure in different ways as the internal LED degrades over time.

Newer alternative methods have been developed to improve solid-state reliability further. Capacitive and inductive based isolation technologies were developed to combat issues present in photo relays to provide robust reliability as well as high performance. Refer to Section 2.2 for more information.

Isolated switches are single-chip designs that have integrated MOSFETs, also, isolated switch drivers are chips that drive a control signal and power to an external array of MOSFETs. Both of these designs form a solid-state relay by leveraging capacitive and inductive isolation technologies

 Block Diagram of Solid-State
                    Relays Figure 2-2 Block Diagram of Solid-State Relays