SLVAFU8 July   2024 TPSI2072-Q1 , TPSI2140-Q1 , TPSI3050 , TPSI3050-Q1 , TPSI3052 , TPSI3052-Q1 , TPSI3100 , TPSI3100-Q1

 

  1.   1
  2.   Abstract
  3.   Trademarks
  4. 1Introduction
  5. 2What Are Solid-State Relays?
    1. 2.1 History
      1. 2.1.1 Electromechanical Relays
      2. 2.1.2 Solid-State Relays
    2. 2.2 Isolation Technologies
      1. 2.2.1 Isolation Specifications
    3. 2.3 Relay Evolution
  6. 3Failure Mechanisms
    1. 3.1 Arcing in an Electromechanical Relay
    2. 3.2 Photo-degradation in Photo Relays
    3. 3.3 Partial Discharge
    4. 3.4 Time-Dependent Dielectric Breakdown in Capacitive and Inductive Isolation
  7. 4Electromechanical vs. Photo vs. Capacitive or Inductive
    1. 4.1 Electromechanical Relays
      1. 4.1.1 Advantages
        1. 4.1.1.1 No Leakage Current
      2. 4.1.2 Limitations
        1. 4.1.2.1 Switching Speed
        2. 4.1.2.2 Package Size
    2. 4.2 Photo or Optical Relays
      1. 4.2.1 Advantages
        1. 4.2.1.1 Lower EMI
      2. 4.2.2 Limitations
        1. 4.2.2.1 Limited Temperature Range
    3. 4.3 Capacitive or Inductive Based Relays
      1. 4.3.1 Advantages
        1. 4.3.1.1 Auxiliary Power
        2. 4.3.1.2 Bidirectional Communication
      2. 4.3.2 Limitations
        1. 4.3.2.1 EMI
    4. 4.4 Overall Comparison
  8. 5Summary
  9. 6References

Limited Temperature Range

Photo relays can have a lower operating temperature range compared to other relay designs. This is because the LED within a photo relay cannot exceed a certain temperature range without compromising high performance due to potential LED degradation. To achieve higher temperature ranges, most photo relays have to use more expensive materials, which is not practical in most applications.